Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of e^{3x-1}
\int\:e^{3x-1}dx
limit as x approaches-4 of x^2-5x+12
\lim\:_{x\to\:-4}(x^{2}-5x+12)
integral of-(sin(x))/(cos(x))
\int\:-\frac{\sin(x)}{\cos(x)}dx
integral of 3/(e^{2x)}
\int\:\frac{3}{e^{2x}}dx
integral from 0 to 1 of 8x^3
\int\:_{0}^{1}8x^{3}dx
integral from 0 to 4pi of t^2sin(t/2)
\int\:_{0}^{4π}t^{2}\sin(\frac{t}{2})dt
(dy)/(dx)=6+6y+x+xy
\frac{dy}{dx}=6+6y+x+xy
sum from n=1 to infinity of (2n)/(n+1)
\sum\:_{n=1}^{\infty\:}\frac{2n}{n+1}
integral of 32x^3-15x^2+8x
\int\:32x^{3}-15x^{2}+8xdx
integral of 2x^2sin(3x)
\int\:2x^{2}\sin(3x)dx
integral of ln((4x)^2)
\int\:\ln((4x)^{2})dx
integral of (10x)/(5x^2+1)
\int\:\frac{10x}{5x^{2}+1}dx
derivative of 1-1/(2sqrt(1-x))
\frac{d}{dx}(1-\frac{1}{2\sqrt{1-x}})
derivative of (x^2-6x+1)/(x^2+8)
derivative\:\frac{x^{2}-6x+1}{x^{2}+8}
derivative of 5+7sqrt(x)
derivative\:5+7\sqrt{x}
derivative of ln(xe^{sqrt(x)}+9)
derivative\:\ln(xe^{\sqrt{x}}+9)
tangent of f(x)= 1/(x^2),\at x=-1
tangent\:f(x)=\frac{1}{x^{2}},\at\:x=-1
limit as x approaches infinity of ln(5)
\lim\:_{x\to\:\infty\:}(\ln(5))
integral of ln(6x^4)
\int\:\ln(6x^{4})dx
integral from 0 to x of 1/x
\int\:_{0}^{x}\frac{1}{x}dx
derivative of 9cos^2(x)
\frac{d}{dx}(9\cos^{2}(x))
integral of 5x^2
\int\:5x^{2}dx
limit as x approaches 0 of (3-3)/x
\lim\:_{x\to\:0}(\frac{3-3}{x})
sum from k=1 to infinity of (2k+1)/k
\sum\:_{k=1}^{\infty\:}\frac{2k+1}{k}
(x+1)y^'+y=ln(x)
(x+1)y^{\prime\:}+y=\ln(x)
maclaurin (1+x)/(1-x)
maclaurin\:\frac{1+x}{1-x}
limit as x approaches 0+of (1+2x)^{1/x}
\lim\:_{x\to\:0+}((1+2x)^{\frac{1}{x}})
limit as x approaches 1.5 of 1/(x-2)
\lim\:_{x\to\:1.5}(\frac{1}{x-2})
xy^'+y=4xy^2,y(1)=9
xy^{\prime\:}+y=4xy^{2},y(1)=9
integral of-8e^{x+4}-5/(x+7)-5sec^2(x+6)
\int\:-8e^{x+4}-\frac{5}{x+7}-5\sec^{2}(x+6)dx
limit as x approaches-1+of x+4
\lim\:_{x\to\:-1+}(x+4)
(dx)/(dy)=xysin(y^2)
\frac{dx}{dy}=xy\sin(y^{2})
derivative of (2e^{-1/(x^2})/(x^3))
\frac{d}{dx}(\frac{2e^{-\frac{1}{x^{2}}}}{x^{3}})
(\partial)/(\partial z)(4z)
\frac{\partial\:}{\partial\:z}(4z)
integral of-tan(y)
\int\:-\tan(y)dy
integral of 1/(5-4cos(x))
\int\:\frac{1}{5-4\cos(x)}dx
ty^'=t+y
ty^{\prime\:}=t+y
derivative of y^2-cos(x)
\frac{d}{dx}(y^{2}-\cos(x))
inverse oflaplace ((s+5))/(s(s+4)^2)
inverselaplace\:\frac{(s+5)}{s(s+4)^{2}}
integral of (cos(x))/(5+sin^2(x))
\int\:\frac{\cos(x)}{5+\sin^{2}(x)}dx
(dy)/(dx)=6e^{x-y}
\frac{dy}{dx}=6e^{x-y}
derivative of sqrt(x^3)+x
\frac{d}{dx}(\sqrt{x^{3}}+x)
sum from n=1 to infinity of 1/(n^2+5)
\sum\:_{n=1}^{\infty\:}\frac{1}{n^{2}+5}
integral of 1/(sqrt((4+x^2)))
\int\:\frac{1}{\sqrt{(4+x^{2})}}dx
derivative of y= 2/3 (x^2+1)^{3/2}
derivative\:y=\frac{2}{3}(x^{2}+1)^{\frac{3}{2}}
tangent of y=5xtan(x),\at x=pi
tangent\:y=5x\tan(x),\at\:x=π
derivative of f(x)=3^{x^5}
derivative\:f(x)=3^{x^{5}}
limit as x approaches 0+of x^{(1/x)}
\lim\:_{x\to\:0+}(x^{(\frac{1}{x})})
limit as x approaches 1-of x+3
\lim\:_{x\to\:1-}(x+3)
(dy)/(dt)+3y=13sin(2t),y(0)=6
\frac{dy}{dt}+3y=13\sin(2t),y(0)=6
tangent of f(x)=x^4+7x^2-x,(1,7)
tangent\:f(x)=x^{4}+7x^{2}-x,(1,7)
integral from 0 to 3 of (x^3-x)
\int\:_{0}^{3}(x^{3}-x)dx
x derivative of ln(y)=1
x\frac{d}{dx}(\ln(y))=1
limit as x approaches 2+of 1/(x+2)
\lim\:_{x\to\:2+}(\frac{1}{x+2})
derivative of 33(10sqrt(x)-x+10.45)
\frac{d}{dx}(33(10\sqrt{x}-x+10.45))
limit as x approaches 3+of (x-4)/(3-x)
\lim\:_{x\to\:3+}(\frac{x-4}{3-x})
d/(dt)(sqrt(5)t)
\frac{d}{dt}(\sqrt{5}t)
derivative of log_{10}(x+1)
derivative\:\log_{10}(x+1)
area y=-3x^2+6x+9,-3<= x<= 3
area\:y=-3x^{2}+6x+9,-3\le\:x\le\:3
derivative of sqrt(u)
derivative\:\sqrt{u}
tangent of f(x)=x^3-3x+1
tangent\:f(x)=x^{3}-3x+1
limit as n approaches infinity of x^{2n}
\lim\:_{n\to\:\infty\:}(x^{2n})
limit as x approaches o+of (x+1)^{inx}
\lim\:_{x\to\:o+}((x+1)^{inx})
limit as x approaches infinity of xe^{-sx}
\lim\:_{x\to\:\infty\:}(xe^{-sx})
derivative of (x^2-16/(x-4))
\frac{d}{dx}(\frac{x^{2}-16}{x-4})
integral of (x^2+10x+2)/(x^3+15x^2+6x+9)
\int\:\frac{x^{2}+10x+2}{x^{3}+15x^{2}+6x+9}dx
f(x)=3-2x
f(x)=3-2x
limit as x approaches 0 of tan(2x)csc(4x)
\lim\:_{x\to\:0}(\tan(2x)\csc(4x))
normal of y=x^4+5e^x,(0,5)
normal\:y=x^{4}+5e^{x},(0,5)
(dy)/(dx)=piy+12e
\frac{dy}{dx}=πy+12e
limit as x approaches pi of (5x)/3
\lim\:_{x\to\:π}(\frac{5x}{3})
area y=sqrt(x),y=x
area\:y=\sqrt{x},y=x
derivative of 3^{x^2-2x+1}
derivative\:3^{x^{2}-2x+1}
integral of y^2e^{-y}
\int\:y^{2}e^{-y}dy
derivative of y=(10)/x
derivative\:y=\frac{10}{x}
derivative of tan(x/2-cot(x/2))
\frac{d}{dx}(\tan(\frac{x}{2})-\cot(\frac{x}{2}))
integral of (2x-3)(4x^2+1)
\int\:(2x-3)(4x^{2}+1)dx
derivative of (5x/(x-2))
\frac{d}{dx}(\frac{5x}{x-2})
limit as x approaches-2 of 7/(x^2)
\lim\:_{x\to\:-2}(\frac{7}{x^{2}})
limit as x approaches 7-of ((x+8))/(x-7)
\lim\:_{x\to\:7-}(\frac{(x+8)}{x-7})
integral of sin(2x)*cos(x)
\int\:\sin(2x)\cdot\:\cos(x)dx
derivative of x^3-3x^2+2x
\frac{d}{dx}(x^{3}-3x^{2}+2x)
(\partial)/(\partial x)(x^3y^3+y-z+3)
\frac{\partial\:}{\partial\:x}(x^{3}y^{3}+y-z+3)
(\partial)/(\partial x)(x^7y^8-x^6y^7)
\frac{\partial\:}{\partial\:x}(x^{7}y^{8}-x^{6}y^{7})
laplacetransform e^{-2t}sin(3t)
laplacetransform\:e^{-2t}\sin(3t)
integral of xcsc^2(x)
\int\:x\csc^{2}(x)dx
limit as x approaches+(-2) of (-9)/(x^2)
\lim\:_{x\to\:+(-2)}(\frac{-9}{x^{2}})
2<= x<= 6,y=2
2\le\:x\le\:6,y=2
derivative of x^4cos(7x-5)
derivative\:x^{4}\cos(7x-5)
derivative of 2ay
derivative\:2ay
critical f(x)=e^{y^2}+2x^3
critical\:f(x)=e^{y^{2}}+2x^{3}
(\partial)/(\partial y)(2cos(x+2y))
\frac{\partial\:}{\partial\:y}(2\cos(x+2y))
integral of (x^2-4)/(x(x^2+4))
\int\:\frac{x^{2}-4}{x(x^{2}+4)}dx
integral of cos^5(θ)sin(θ)
\int\:\cos^{5}(θ)\sin(θ)dθ
area y=x,y=2xsqrt(49-x^2)
area\:y=x,y=2x\sqrt{49-x^{2}}
y^{''}+25y=0,y(pi)=3,y^'(pi)=-3
y^{\prime\:\prime\:}+25y=0,y(π)=3,y^{\prime\:}(π)=-3
integral from 0 to 4 of (-x^2+4x)
\int\:_{0}^{4}(-x^{2}+4x)dx
slope of (1)(-1.5)
slope\:(1)(-1.5)
y^'+3y=2e^{-x}
y^{\prime\:}+3y=2e^{-x}
integral of 1/(x(x^2-4))
\int\:\frac{1}{x(x^{2}-4)}dx
1
..
335
336
337
338
339
..
2459