Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches-2 of (sin(-pix))/(2+x)
\lim\:_{x\to\:-2}(\frac{\sin(-πx)}{2+x})
integral from 2 to 3 of (22)/(sqrt(3-x))
\int\:_{2}^{3}\frac{22}{\sqrt{3-x}}dx
tangent of f(x)=x^3-4x,\at x=0
tangent\:f(x)=x^{3}-4x,\at\:x=0
inverse oflaplace 2/((s+2))
inverselaplace\:\frac{2}{(s+2)}
derivative of ln(((8x-9)^2)/(-x-1))
derivative\:\ln(\frac{(8x-9)^{2}}{-x-1})
derivative of x^{11/2}
derivative\:x^{\frac{11}{2}}
x^'=-x^2
x^{\prime\:}=-x^{2}
derivative of f(2)=3x^2-2x+5
derivative\:f(2)=3x^{2}-2x+5
integral of (x+2)/(x^3)
\int\:\frac{x+2}{x^{3}}dx
(\partial)/(\partial x)(2xe^{x^2})
\frac{\partial\:}{\partial\:x}(2xe^{x^{2}})
integral of (sec^2(pix)-sqrt(x))
\int\:(\sec^{2}(πx)-\sqrt{x})dx
(\partial)/(\partial x)(((yx)/(zw))^{1/2})
\frac{\partial\:}{\partial\:x}((\frac{yx}{zw})^{\frac{1}{2}})
derivative of (4-xe^x/(x+e^x))
\frac{d}{dx}(\frac{4-xe^{x}}{x+e^{x}})
sum from n=1 to infinity of (cos(npi))/(n^2)
\sum\:_{n=1}^{\infty\:}\frac{\cos(nπ)}{n^{2}}
limit as x approaches 2 of (sqrt(x+47-7))/(5x-10)
\lim\:_{x\to\:2}(\frac{\sqrt{x+47-7}}{5x-10})
(\partial)/(\partial x)(y^5sin(6x))
\frac{\partial\:}{\partial\:x}(y^{5}\sin(6x))
integral from 0 to 1 of integral from 0 to s^5 of cos(s^6)
\int\:_{0}^{1}\int\:_{0}^{s^{5}}\cos(s^{6})dtds
y^'=-ty
y^{\prime\:}=-ty
y^'=((x+2y))/x
y^{\prime\:}=\frac{(x+2y)}{x}
derivative of (1+e^{-x}^{-1})
\frac{d}{dx}((1+e^{-x})^{-1})
(dy)/(dx)=y(1-y)
\frac{dy}{dx}=y(1-y)
limit as x approaches 4 of 5x^2-2x+3
\lim\:_{x\to\:4}(5x^{2}-2x+3)
limit as x approaches 7 of ((x^2-2x-35))/(x-7)
\lim\:_{x\to\:7}(\frac{(x^{2}-2x-35)}{x-7})
limit as x approaches 0 of (1^x-9^x)/x
\lim\:_{x\to\:0}(\frac{1^{x}-9^{x}}{x})
(\partial)/(\partial x)(x^2+2y^2-x^2y)
\frac{\partial\:}{\partial\:x}(x^{2}+2y^{2}-x^{2}y)
integral of (10)/(sqrt(1-x^2))
\int\:\frac{10}{\sqrt{1-x^{2}}}dx
xy^{''}-2y^'=0
xy^{\prime\:\prime\:}-2y^{\prime\:}=0
integral of 6/((9t^2+1)^2)
\int\:\frac{6}{(9t^{2}+1)^{2}}dt
derivative of Ax^2e^x
\frac{d}{dx}(Ax^{2}e^{x})
integral from 0 to 3 of 450.268e^{1.12567t}
\int\:_{0}^{3}450.268e^{1.12567t}dt
limit as x approaches infinity of e^x-x
\lim\:_{x\to\:\infty\:}(e^{x}-x)
integral of (x^2+1)/(x^4+1)
\int\:\frac{x^{2}+1}{x^{4}+1}dx
derivative of 2e^xcos(x)
derivative\:2e^{x}\cos(x)
(\partial)/(\partial x)(ln(x^3))
\frac{\partial\:}{\partial\:x}(\ln(x^{3}))
integral of 1/((1-y))
\int\:\frac{1}{(1-y)}dy
integral of (3/x)
\int\:(\frac{3}{x})dx
(\partial)/(\partial z)(5sin^2(z))
\frac{\partial\:}{\partial\:z}(5\sin^{2}(z))
sum from n=1 to infinity of 4+(-1)^n
\sum\:_{n=1}^{\infty\:}4+(-1)^{n}
integral of 5(tan(x))(ln(cos(x)))
\int\:5(\tan(x))(\ln(\cos(x)))dx
integral from 2 to infinity of 1/(3x+2)
\int\:_{2}^{\infty\:}\frac{1}{3x+2}dx
derivative of 5x+1
derivative\:5x+1
integral of e^xsin(6e^x+3)
\int\:e^{x}\sin(6e^{x}+3)dx
slope of sqrt(sin(cos^2(x))),\at x=pi
slope\:\sqrt{\sin(\cos^{2}(x))},\at\:x=π
derivative of (6+x)/(1-6x)
derivative\:\frac{6+x}{1-6x}
inverse oflaplace 6/(s^2)
inverselaplace\:\frac{6}{s^{2}}
(dx)/(dt)=3x^2+2x
\frac{dx}{dt}=3x^{2}+2x
integral of 5/(\sqrt[3]{x)}
\int\:\frac{5}{\sqrt[3]{x}}dx
derivative of (arcsin(x)/(sqrt(1-x^2)))
\frac{d}{dx}(\frac{\arcsin(x)}{\sqrt{1-x^{2}}})
limit as x approaches 8-of (sqrt(64-x^2))/(x-8)
\lim\:_{x\to\:8-}(\frac{\sqrt{64-x^{2}}}{x-8})
derivative of xsqrt(64-x^2)
\frac{d}{dx}(x\sqrt{64-x^{2}})
derivative of \sqrt[3]{(3x/(x+2)})
\frac{d}{dx}(\sqrt[3]{\frac{3x}{x+2}})
derivative of f(t)=(\sqrt[3]{t})/(t-3)
derivative\:f(t)=\frac{\sqrt[3]{t}}{t-3}
integral from 0 to 5 of pi(25-x^2)
\int\:_{0}^{5}π(25-x^{2})dx
limit as x approaches 4 of (x+3)^2
\lim\:_{x\to\:4}((x+3)^{2})
(d^2}{dx^2}(e^{-\frac{x^2)/2})
\frac{d^{2}}{dx^{2}}(e^{-\frac{x^{2}}{2}})
(d^3)/(dx^3)(sin(x))
\frac{d^{3}}{dx^{3}}(\sin(x))
limit as x approaches 0+of tan(4x)
\lim\:_{x\to\:0+}(\tan(4x))
derivative of 4/(x^7)
derivative\:\frac{4}{x^{7}}
derivative of sqrt(18-2x)
derivative\:\sqrt{18-2x}
taylor f(x)=2^x
taylor\:f(x)=2^{x}
limit as x approaches-infinity of 6/((1+e^{-x))}
\lim\:_{x\to\:-\infty\:}(\frac{6}{(1+e^{-x})})
limit as x approaches 7 of (x^3-4x^2-19x-14)/(x^2-8x-7)
\lim\:_{x\to\:7}(\frac{x^{3}-4x^{2}-19x-14}{x^{2}-8x-7})
y^{''}+2y^'+y=x^2-2x+1
y^{\prime\:\prime\:}+2y^{\prime\:}+y=x^{2}-2x+1
derivative of (x^4ln(x)^5)
\frac{d}{dx}((x^{4}\ln(x))^{5})
limit as x approaches 6 of ln(6-x)
\lim\:_{x\to\:6}(\ln(6-x))
limit as x approaches 0 of x-1/x
\lim\:_{x\to\:0}(x-\frac{1}{x})
limit as x approaches 0+of 4sin(x)ln(x)
\lim\:_{x\to\:0+}(4\sin(x)\ln(x))
derivative of 1/(sqrt(1+x^2))
derivative\:\frac{1}{\sqrt{1+x^{2}}}
limit as x approaches 3 of (-4)/(2x-5)
\lim\:_{x\to\:3}(\frac{-4}{2x-5})
derivative of x+6x^{2/3}
\frac{d}{dx}(x+6x^{\frac{2}{3}})
xy^'=xsqrt(y)+2sqrt(y)
xy^{\prime\:}=x\sqrt{y}+2\sqrt{y}
(d^2)/(dx^2)(sqrt(x+2))
\frac{d^{2}}{dx^{2}}(\sqrt{x+2})
integral of (x^2+1)/(sqrt(x))
\int\:\frac{x^{2}+1}{\sqrt{x}}dx
tangent of y=-1/4 x^2,(-2,-1)
tangent\:y=-\frac{1}{4}x^{2},(-2,-1)
tangent of (1+2x)^2
tangent\:(1+2x)^{2}
y^{''}-8y^'+41y=0
y^{\prime\:\prime\:}-8y^{\prime\:}+41y=0
derivative of (x^2-x+1^{-7})
\frac{d}{dx}((x^{2}-x+1)^{-7})
integral of (x-1)/(x(x^2-5x+6))
\int\:\frac{x-1}{x(x^{2}-5x+6)}dx
integral of (3-5x)^2
\int\:(3-5x)^{2}dx
(dy)/(dx)=2ycos(x)
\frac{dy}{dx}=2y\cos(x)
limit as x approaches 4 of-x^2-9x-8
\lim\:_{x\to\:4}(-x^{2}-9x-8)
derivative of (5sqrt(x)/(2x^{-2)})
\frac{d}{dx}(\frac{5\sqrt{x}}{2x^{-2}})
limit as x approaches infinity of 3+x^2
\lim\:_{x\to\:\infty\:}(3+x^{2})
area 2y=3sqrt(x),y=4,2y+3x=6
area\:2y=3\sqrt{x},y=4,2y+3x=6
integral of ((x-1))/(((x-2)(x^2-2x+2)^2))
\int\:\frac{(x-1)}{((x-2)(x^{2}-2x+2)^{2})}dx
limit as x approaches 0+of (3x)^{sin(x)}
\lim\:_{x\to\:0+}((3x)^{\sin(x)})
25y^{''}-40y^'+16y=0,y(0)=2,y^'(0)=-3
25y^{\prime\:\prime\:}-40y^{\prime\:}+16y=0,y(0)=2,y^{\prime\:}(0)=-3
integral of 5sin^3(x)cos^7(x)
\int\:5\sin^{3}(x)\cos^{7}(x)dx
integral from 1 to 2 of ln|x^2+1|
\int\:_{1}^{2}\ln\left|x^{2}+1\right|dx
derivative of ln(4x-1)
\frac{d}{dx}(\ln(4x-1))
integral from 4 to 5 of 1/(5x-1)
\int\:_{4}^{5}\frac{1}{5x-1}dx
xy^'+3y=(4e^{2x})/(x^2)
xy^{\prime\:}+3y=\frac{4e^{2x}}{x^{2}}
limit as x approaches 1 of (2x)/(x-1)
\lim\:_{x\to\:1}(\frac{2x}{x-1})
derivative of f(x)=9x^5(x^3-2x)
derivative\:f(x)=9x^{5}(x^{3}-2x)
y^{''}-2y^'-63y=0
y^{\prime\:\prime\:}-2y^{\prime\:}-63y=0
sum from n=1 to infinity of 1/(n^{-1)}
\sum\:_{n=1}^{\infty\:}\frac{1}{n^{-1}}
(d^2y)/(d^2x)+(4dy)/(dx)+3y=0
\frac{d^{2}y}{d^{2}x}+\frac{4dy}{dx}+3y=0
limit as x approaches 0 of x/(x^2-4)
\lim\:_{x\to\:0}(\frac{x}{x^{2}-4})
t^3(dy)/(dt)+3t^2y=2cos(t)
t^{3}\frac{dy}{dt}+3t^{2}y=2\cos(t)
integral of x^{15}e^{-x^{16}}
\int\:x^{15}e^{-x^{16}}dx
1
..
639
640
641
642
643
..
2459