Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (x-1)^2
derivative\:(x-1)^{2}
derivative of sec^2(xdx)
\frac{d}{dx}(\sec^{2}(x)dx)
(6-10y+e^{-5x})dx-2dy=0
(6-10y+e^{-5x})dx-2dy=0
inverse oflaplace (2-s)/(s^2+6s+34)
inverselaplace\:\frac{2-s}{s^{2}+6s+34}
longdivision (1-x)/(1+x)
longdivision\:\frac{1-x}{1+x}
derivative of (cos^2(x)x)
\frac{d}{dx}((\cos^{2}(x))x)
(\partial)/(\partial x)(sqrt(x)sqrt(y))
\frac{\partial\:}{\partial\:x}(\sqrt{x}\sqrt{y})
derivative of (10)/((x^2-7)^4)
derivative\:\frac{10}{(x^{2}-7)^{4}}
tangent of y=sec(x),(pi/3 ,2)
tangent\:y=\sec(x),(\frac{π}{3},2)
inverse oflaplace 7/(6s(s+2/9))
inverselaplace\:\frac{7}{6s(s+\frac{2}{9})}
integral of ln(x+9)
\int\:\ln(x+9)dx
integral of e^2
\int\:e^{2}dx
derivative of (9sqrt(x)+8x^2)
\frac{d}{dx}((9\sqrt{x}+8)x^{2})
y^'=(1-2x)y^2,y(0)=-1/6
y^{\prime\:}=(1-2x)y^{2},y(0)=-\frac{1}{6}
derivative of x^3y^5-2x^2y+x
\frac{d}{dx}(x^{3}y^{5}-2x^{2}y+x)
integral of (x-2)(x+2)
\int\:(x-2)(x+2)dx
tangent of f(x)=4tan(x),\at x= pi/6
tangent\:f(x)=4\tan(x),\at\:x=\frac{π}{6}
derivative of ln(x^3+2x)
\frac{d}{dx}(\ln(x^{3})+2x)
derivative of cos(xsin^2(x))
\frac{d}{dx}(\cos(x)\sin^{2}(x))
y^'=-4xy
y^{\prime\:}=-4xy
(\partial)/(\partial x)((xy)/(x+7))
\frac{\partial\:}{\partial\:x}(\frac{xy}{x+7})
integral of arcsec(x)
\int\:\arcsec(x)dx
maclaurin 3^x
maclaurin\:3^{x}
tangent of f(x)=sin(sin(x)),\at x=2pi,0
tangent\:f(x)=\sin(\sin(x)),\at\:x=2π,0
derivative of f(x)=arccos(x)
derivative\:f(x)=\arccos(x)
derivative of 3sin(x+2cos(x))
\frac{d}{dx}(3\sin(x)+2\cos(x))
integral of 6x^6
\int\:6x^{6}dx
derivative of (e^x/(4-x))
\frac{d}{dx}(\frac{e^{x}}{4-x})
y^{''}-2y^'+y=te^t
y^{\prime\:\prime\:}-2y^{\prime\:}+y=te^{t}
integral of p(p+5)^5
\int\:p(p+5)^{5}dp
limit as x approaches infinity of 1/2 x
\lim\:_{x\to\:\infty\:}(\frac{1}{2}x)
tangent of 1/3 x^3-3x^2+10x+6,\at x=2
tangent\:\frac{1}{3}x^{3}-3x^{2}+10x+6,\at\:x=2
(xdy)/(dx)=y
\frac{xdy}{dx}=y
integral of x/(\sqrt[3]{x-8)}
\int\:\frac{x}{\sqrt[3]{x-8}}dx
derivative of y=xsin(6/x)
derivative\:y=x\sin(\frac{6}{x})
integral of-x^2+1
\int\:-x^{2}+1dx
derivative of e^{0.1x^2}
\frac{d}{dx}(e^{0.1x^{2}})
area y=e^x,y=e^{7x},x=0,x=ln(2)
area\:y=e^{x},y=e^{7x},x=0,x=\ln(2)
derivative of y=5x^7ln(x)
derivative\:y=5x^{7}\ln(x)
derivative of e^x-x^2+3x-2
\frac{d}{dx}(e^{x}-x^{2}+3x-2)
integral from-2 to 3 of (17)/(x^4)
\int\:_{-2}^{3}\frac{17}{x^{4}}dx
y^{''}=2y^'+8y
y^{\prime\:\prime\:}=2y^{\prime\:}+8y
integral of 4/3 e^{4x}
\int\:\frac{4}{3}e^{4x}dx
derivative of (x^2+3^3)
\frac{d}{dx}((x^{2}+3)^{3})
(\partial)/(\partial y)(3/2 (x+1)^2(y^2-9))
\frac{\partial\:}{\partial\:y}(\frac{3}{2}(x+1)^{2}(y^{2}-9))
integral of x/((25+x^2)^{3/2)}
\int\:\frac{x}{(25+x^{2})^{\frac{3}{2}}}dx
derivative of g(x)=sqrt(6-7x)
derivative\:g(x)=\sqrt{6-7x}
tangent of f(x)=x-2x^2,\at x=1
tangent\:f(x)=x-2x^{2},\at\:x=1
integral of 1/(sqrt(x^2+6x+10))
\int\:\frac{1}{\sqrt{x^{2}+6x+10}}dx
integral of 33sec^4(x)
\int\:33\sec^{4}(x)dx
y^'=t^2y
y^{\prime\:}=t^{2}y
y^'=y+2
y^{\prime\:}=y+2
integral of (((ln(x))^5))/x
\int\:\frac{((\ln(x))^{5})}{x}dx
xln(x)y^'+y=2ln(x)
x\ln(x)y^{\prime\:}+y=2\ln(x)
integral from 1/2 to 5 of 8xln(2x)
\int\:_{\frac{1}{2}}^{5}8x\ln(2x)dx
(\partial)/(\partial x)((-6x+1y)/(-8x-1y))
\frac{\partial\:}{\partial\:x}(\frac{-6x+1y}{-8x-1y})
integral from 0 to 1 of 2/(3x^2+4x+1)
\int\:_{0}^{1}\frac{2}{3x^{2}+4x+1}dx
limit as x approaches 0 of (6^x-4^x)/x
\lim\:_{x\to\:0}(\frac{6^{x}-4^{x}}{x})
integral of-x^2(sqrt(3))/3
\int\:-x^{2}\frac{\sqrt{3}}{3}dx
derivative of xtan(y)
\frac{d}{dx}(x\tan(y))
integral from 0 to 2 of 1/(x^2+4)
\int\:_{0}^{2}\frac{1}{x^{2}+4}dx
derivative of e^{i2x}
\frac{d}{dx}(e^{i2x})
derivative of f(-5)=sqrt(x)+6
derivative\:f(-5)=\sqrt{x}+6
integral of 1/(s+1)
\int\:\frac{1}{s+1}ds
(\partial)/(\partial x)(x^{-1}+ln(z^2))
\frac{\partial\:}{\partial\:x}(x^{-1}+\ln(z^{2}))
simplify (x^2)/6-x
simplify\:\frac{x^{2}}{6}-x
sum from n=1 to infinity of 5(2/3)^{n-1}
\sum\:_{n=1}^{\infty\:}5(\frac{2}{3})^{n-1}
inverse oflaplace (e^{-3s})/(s-2)
inverselaplace\:\frac{e^{-3s}}{s-2}
(\partial)/(\partial y)(x^{1/2}+y^{1/2})
\frac{\partial\:}{\partial\:y}(x^{\frac{1}{2}}+y^{\frac{1}{2}})
derivative of (1+3x^2(x-x^2))
\frac{d}{dx}((1+3x^{2})(x-x^{2}))
(u-2)/(u^2-2u+1)du=-1/x dx
\frac{u-2}{u^{2}-2u+1}du=-\frac{1}{x}dx
tangent of f(x)=(9x-1)^{-1/3},\at x=1
tangent\:f(x)=(9x-1)^{-\frac{1}{3}},\at\:x=1
solvefor t,(dy)/(dt)=y^3-y^2-12y
solvefor\:t,\frac{dy}{dt}=y^{3}-y^{2}-12y
derivative of f(x)=(4e^x+5e^{-x})/6
derivative\:f(x)=\frac{4e^{x}+5e^{-x}}{6}
(\partial)/(\partial x)(1/(x^2+4))
\frac{\partial\:}{\partial\:x}(\frac{1}{x^{2}+4})
(dy)/(dx)=(x^3)/(y+1)
\frac{dy}{dx}=\frac{x^{3}}{y+1}
xy^'-y=sqrt(x^2+y^2)
xy^{\prime\:}-y=\sqrt{x^{2}+y^{2}}
limit as x approaches 2 of 5x^3-3x^2+x-6
\lim\:_{x\to\:2}(5x^{3}-3x^{2}+x-6)
area e^x,xe^x,x=0
area\:e^{x},xe^{x},x=0
derivative of 3e^{-3/x}
\frac{d}{dx}(3e^{-\frac{3}{x}})
y^{''}+2y^'+y=e^{-t}
y^{\prime\:\prime\:}+2y^{\prime\:}+y=e^{-t}
derivative of arctan(x^2+y^2+ln(xy)-1)
\frac{d}{dx}(\arctan(x^{2}+y^{2})+\ln(xy)-1)
derivative of 8cos(2x)
derivative\:8\cos(2x)
y^{''}+y^'+ky=0
y^{\prime\:\prime\:}+y^{\prime\:}+ky=0
(dL)/(dx)
\frac{dL}{dx}
derivative of ln(x(x^2+3^3))
\frac{d}{dx}(\ln(x(x^{2}+3)^{3}))
integral of 10sec^2(x)
\int\:10\sec^{2}(x)dx
derivative of (-9x^2+4^2)
\frac{d}{dx}((-9x^{2}+4)^{2})
area y=2x-x^2,y=0
area\:y=2x-x^{2},y=0
derivative of sqrt(y+x)
\frac{d}{dx}(\sqrt{y+x})
derivative of cos(pix)(pi)
derivative\:\cos(πx)(π)
derivative of (x^2-1(x-1))
\frac{d}{dx}((x^{2}-1)(x-1))
limit as x approaches 1 of 2x^5-7x^4+7
\lim\:_{x\to\:1}(2x^{5}-7x^{4}+7)
derivative of-(8(1-12x^2)/((4x^2+1)^3))
\frac{d}{dx}(-\frac{8(1-12x^{2})}{(4x^{2}+1)^{3}})
derivative of f(x)=4pir^2
derivative\:f(x)=4πr^{2}
(\partial)/(\partial z)((-z)/(y^2+z^2))
\frac{\partial\:}{\partial\:z}(\frac{-z}{y^{2}+z^{2}})
integral from 0 to 1 of x^4e^{2x}
\int\:_{0}^{1}x^{4}e^{2x}dx
integral of 1/((x^2+6)^{3/2)}
\int\:\frac{1}{(x^{2}+6)^{\frac{3}{2}}}dx
sum from n=0 to infinity of 2x^n
\sum\:_{n=0}^{\infty\:}2x^{n}
derivative of x/(x^2+36)
derivative\:\frac{x}{x^{2}+36}
1
..
678
679
680
681
682
..
2459