Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 0 of (tan(9x))^x
\lim\:_{x\to\:0}((\tan(9x))^{x})
derivative of-4pisin(8pix)
\frac{d}{dx}(-4π\sin(8πx))
derivative of 4log_{3}(x^2-1)
\frac{d}{dx}(4\log_{3}(x^{2}-1))
derivative of 20x
\frac{d}{dx}(20x)
integral of 1/(x(1+4In^2x))
\int\:\frac{1}{x(1+4In^{2}x)}dx
derivative of y=16sqrt(x)
derivative\:y=16\sqrt{x}
extreme f(v)= v/(v+d/v)
extreme\:f(v)=\frac{v}{v+\frac{d}{v}}
area y=3sqrt(x),y= 3/2 x
area\:y=3\sqrt{x},y=\frac{3}{2}x
inverse oflaplace 3e^{-s}
inverselaplace\:3e^{-s}
integral from 1 to infinity of 8e^{-4x}
\int\:_{1}^{\infty\:}8e^{-4x}dx
derivative of y=cot^2(5x)
derivative\:y=\cot^{2}(5x)
derivative of f(x)= 4/(x^3)
derivative\:f(x)=\frac{4}{x^{3}}
derivative of (x^{11}-1)^3
derivative\:(x^{11}-1)^{3}
derivative of y=6e^xcos(x)
derivative\:y=6e^{x}\cos(x)
integral of 1^{-x}
\int\:1^{-x}dx
integral of xe^{x-1}
\int\:xe^{x-1}dx
(\partial)/(\partial x)(y*x)
\frac{\partial\:}{\partial\:x}(y\cdot\:x)
limit as x approaches 6 of 2x+3x
\lim\:_{x\to\:6}(2x+3x)
x(dy)/(dx)+y=2x+1
x\frac{dy}{dx}+y=2x+1
derivative of tan^2(9x)
derivative\:\tan^{2}(9x)
derivative of f(x)=(x^2-3x)(5x^3+6)
derivative\:f(x)=(x^{2}-3x)(5x^{3}+6)
y^'=e^{2x}+y-1
y^{\prime\:}=e^{2x}+y-1
limit as x approaches 4 of sqrt(x^2-9)
\lim\:_{x\to\:4}(\sqrt{x^{2}-9})
2x^{''}+6x^'+9x=0
2x^{\prime\:\prime\:}+6x^{\prime\:}+9x=0
(2xy+x)dx+(x^2+y)dy=0
(2xy+x)dx+(x^{2}+y)dy=0
integral of 9.8x
\int\:9.8xdx
(\partial)/(\partial t)(0)
\frac{\partial\:}{\partial\:t}(0)
integral of-4x^{3/2}+3x^{2/3}-4x^2
\int\:-4x^{\frac{3}{2}}+3x^{\frac{2}{3}}-4x^{2}dx
integral of 2/(xsqrt(4-(ln(x))^2))
\int\:\frac{2}{x\sqrt{4-(\ln(x))^{2}}}dx
y^{''}-8y^'+12y=0
y^{\prime\:\prime\:}-8y^{\prime\:}+12y=0
integral from 1 to 2 of xy^3e^{x^2y^2}
\int\:_{1}^{2}xy^{3}e^{x^{2}y^{2}}dx
xy^'-2y=9x^2
xy^{\prime\:}-2y=9x^{2}
tangent of y=3x^3+5x+4,(2,38)
tangent\:y=3x^{3}+5x+4,(2,38)
(dy)/(dx)=yx+y^2
\frac{dy}{dx}=yx+y^{2}
integral of (x^2+5x)/((x-3)(x^2+9))
\int\:\frac{x^{2}+5x}{(x-3)(x^{2}+9)}dx
area y=x^2-37,y=11-2x
area\:y=x^{2}-37,y=11-2x
derivative of y=e^{-6x^5}
derivative\:y=e^{-6x^{5}}
integral of 1/(x(1+(ln(x))^2))
\int\:\frac{1}{x(1+(\ln(x))^{2})}dx
slope of-2(x-8)^2
slope\:-2(x-8)^{2}
integral of 1/(xsqrt(x^2+7))
\int\:\frac{1}{x\sqrt{x^{2}+7}}dx
integral of cot^6(x)csc^4(x)
\int\:\cot^{6}(x)\csc^{4}(x)dx
integral of 1/(2cos^2(x))
\int\:\frac{1}{2\cos^{2}(x)}dx
inverse oflaplace 1/((s+1)(s+2))
inverselaplace\:\frac{1}{(s+1)(s+2)}
x^2y^{''}-2xy^'+(2+x^2)y=0
x^{2}y^{\prime\:\prime\:}-2xy^{\prime\:}+(2+x^{2})y=0
(\partial)/(\partial x)((55)/((9+x^2+y^2)))
\frac{\partial\:}{\partial\:x}(\frac{55}{(9+x^{2}+y^{2})})
y^'+3/4 y=1-t/3
y^{\prime\:}+\frac{3}{4}y=1-\frac{t}{3}
derivative of e^{ln(1+1/k)}
derivative\:e^{\ln(1+\frac{1}{k})}
integral from 0 to 2pi of t^2sin(2t)
\int\:_{0}^{2π}t^{2}\sin(2t)dt
derivative of f(x)=(32)/(x^3)
derivative\:f(x)=\frac{32}{x^{3}}
area x+2,1,3
area\:x+2,1,3
derivative of xln(xcos(x))
\frac{d}{dx}(x\ln(x)\cos(x))
integral of 1/(3x)+cos(2x)-5x^2
\int\:\frac{1}{3x}+\cos(2x)-5x^{2}dx
integral of+1/(25e^{-4x)+e^{4x}}
\int\:+\frac{1}{25e^{-4x}+e^{4x}}dx
d/(dθ)(cot^2(sin(θ)))
\frac{d}{dθ}(\cot^{2}(\sin(θ)))
integral of (x+8)/(sqrt(x))
\int\:\frac{x+8}{\sqrt{x}}dx
d/(dt)(e^{4t}cos(t))
\frac{d}{dt}(e^{4t}\cos(t))
integral of y^{-2}
\int\:y^{-2}dy
derivative of (7x-4/(-3x+3))
\frac{d}{dx}(\frac{7x-4}{-3x+3})
derivative of-6
derivative\:-6
limit as x approaches 5 of 2x-5
\lim\:_{x\to\:5}(2x-5)
(dy)/(dt)=(1+t)(1+y)
\frac{dy}{dt}=(1+t)(1+y)
limit as t approaches 1+of (|1-t|)/(1-t)
\lim\:_{t\to\:1+}(\frac{\left|1-t\right|}{1-t})
derivative of e^{x^2-y^2}
\frac{d}{dx}(e^{x^{2}-y^{2}})
slope of (-5,-8),(0,-7)
slope\:(-5,-8),(0,-7)
integral of cos(x)(7+7sin^2(x))
\int\:\cos(x)(7+7\sin^{2}(x))dx
derivative of f(x)=6sin^6(sqrt(x))
derivative\:f(x)=6\sin^{6}(\sqrt{x})
(\partial)/(\partial t)(t^8e^{-x})
\frac{\partial\:}{\partial\:t}(t^{8}e^{-x})
tangent of e^x(2x+2)
tangent\:e^{x}(2x+2)
integral from 0 to 16 of 8x
\int\:_{0}^{16}8xdx
sum from k=1 to infinity of 1/(1+k^2)
\sum\:_{k=1}^{\infty\:}\frac{1}{1+k^{2}}
derivative of f(x)=x^5-2x^3+x-1
derivative\:f(x)=x^{5}-2x^{3}+x-1
derivative of (6x+2x^2/((3+2x)^2))
\frac{d}{dx}(\frac{6x+2x^{2}}{(3+2x)^{2}})
integral from-1 to 3 of x^2+6x+3
\int\:_{-1}^{3}x^{2}+6x+3dx
limit as x approaches 2+of 3-ax-x^2
\lim\:_{x\to\:2+}(3-ax-x^{2})
integral of (7-x)/((x-2)^2)
\int\:\frac{7-x}{(x-2)^{2}}dx
integral of ln(x^2-x+2)
\int\:\ln(x^{2}-x+2)dx
limit as x approaches pi/2 of 6sec(x)
\lim\:_{x\to\:\frac{π}{2}}(6\sec(x))
limit as h approaches 0 of mx+b
\lim\:_{h\to\:0}(mx+b)
integral of e^{x^2+2}
\int\:e^{x^{2}+2}dx
derivative of-8cos(2x)
\frac{d}{dx}(-8\cos(2x))
slope of (-10,4),(2,-5)
slope\:(-10,4),(2,-5)
xy^'=3y
xy^{\prime\:}=3y
(dy}{dx}=\frac{x^5-8y)/x
\frac{dy}{dx}=\frac{x^{5}-8y}{x}
taylor e^x+cos(x)
taylor\:e^{x}+\cos(x)
derivative of sin(x+sin(y))
\frac{d}{dx}(\sin(x)+\sin(y))
limit as x approaches-3 of pi-x
\lim\:_{x\to\:-3}(π-x)
integral from 0 to infinity of t*e^{-t}
\int\:_{0}^{\infty\:}t\cdot\:e^{-t}dt
f(x)=cos(sin^2(x))
f(x)=\cos(\sin^{2}(x))
integral of pi^2r^4
\int\:π^{2}r^{4}dr
derivative of f(x)=sqrt(2)x+sqrt(3x)
derivative\:f(x)=\sqrt{2}x+\sqrt{3x}
derivative of tan(e^x+e^{tan(x)})
\frac{d}{dx}(\tan(e^{x})+e^{\tan(x)})
tangent of y=x^2+5x+9
tangent\:y=x^{2}+5x+9
limit as x approaches 0 of 5/(2x)
\lim\:_{x\to\:0}(\frac{5}{2x})
sum from n=2 to infinity of 1/((2n+7)^3)
\sum\:_{n=2}^{\infty\:}\frac{1}{(2n+7)^{3}}
derivative of e^{3x^3}
derivative\:e^{3x^{3}}
integral from 1 to 2 of (x^5+x^{-5})
\int\:_{1}^{2}(x^{5}+x^{-5})dx
integral of x^3(2+x^4)^5
\int\:x^{3}(2+x^{4})^{5}dx
(\partial)/(\partial y)(-xsin(xy))
\frac{\partial\:}{\partial\:y}(-x\sin(xy))
f(x)= 8/(x^3)
f(x)=\frac{8}{x^{3}}
integral of (27)/(1-cos(3x))
\int\:\frac{27}{1-\cos(3x)}dx
1
..
714
715
716
717
718
..
2459