Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
sum from n=1 to infinity of 3(1/5)^{n-1}
\sum\:_{n=1}^{\infty\:}3(\frac{1}{5})^{n-1}
derivative of f(x)=e^{2x}-1
derivative\:f(x)=e^{2x}-1
sum from n=1 to infinity of-n
\sum\:_{n=1}^{\infty\:}-n
limit as x approaches 0 of (sin(3x^2))/(ln(x^2+1))
\lim\:_{x\to\:0}(\frac{\sin(3x^{2})}{\ln(x^{2}+1)})
derivative of x/((x^2+y^2^{3/2)})
\frac{d}{dx}(\frac{x}{(x^{2}+y^{2})^{\frac{3}{2}}})
derivative of e^{tan(θ)}
derivative\:e^{\tan(θ)}
(\partial)/(\partial x)(yln(3x+5y))
\frac{\partial\:}{\partial\:x}(y\ln(3x+5y))
derivative of f(x)=e^{\sqrt[3]{x}}
derivative\:f(x)=e^{\sqrt[3]{x}}
area sqrt(x),2x-15,0
area\:\sqrt{x},2x-15,0
limit as x approaches 0 of x^4cos(7/x)
\lim\:_{x\to\:0}(x^{4}\cos(\frac{7}{x}))
integral from-1 to 1 of 7x^2-4x-3
\int\:_{-1}^{1}7x^{2}-4x-3dx
integral of (csc^2(x))/(sqrt(3-cot(x)))
\int\:\frac{\csc^{2}(x)}{\sqrt{3-\cot(x)}}dx
(\partial)/(\partial x)(-s^2t^2)
\frac{\partial\:}{\partial\:x}(-s^{2}t^{2})
t(dy)/(dt)+5y=t^3
t\frac{dy}{dt}+5y=t^{3}
integral of 1/(sqrt(8+2x-x^2))
\int\:\frac{1}{\sqrt{8+2x-x^{2}}}dx
limit as x approaches infinity of 8x^2
\lim\:_{x\to\:\infty\:}(8x^{2})
tangent of f(x)=5tan(x),\at x=1.57
tangent\:f(x)=5\tan(x),\at\:x=1.57
integral of (cos(t))^2
\int\:(\cos(t))^{2}dt
limit as x approaches 0 of (sin(3x))/(sin(6x))
\lim\:_{x\to\:0}(\frac{\sin(3x)}{\sin(6x)})
integral of 3e^x-9cos(x)+C
\int\:3e^{x}-9\cos(x)+Cdx
tangent of 4x^3
tangent\:4x^{3}
(dy)/(dx)=tan(x)+sec(x)
\frac{dy}{dx}=\tan(x)+\sec(x)
derivative of (cos(x))/(2sin(x))
derivative\:\frac{\cos(x)}{2\sin(x)}
(\partial)/(\partial v)(4usin(v))
\frac{\partial\:}{\partial\:v}(4u\sin(v))
integral of xsqrt(x-15)
\int\:x\sqrt{x-15}dx
integral of xe^{xy}
\int\:xe^{xy}dy
integral of e^{x+1}
\int\:e^{x+1}dx
derivative of 2/(x^2+4)
\frac{d}{dx}(\frac{2}{x^{2}+4})
derivative of f(t)=t^3e^{-2t}cos(6t)
derivative\:f(t)=t^{3}e^{-2t}\cos(6t)
(\partial)/(\partial x)(((x^2+y^2-4))/(xy))
\frac{\partial\:}{\partial\:x}(\frac{(x^{2}+y^{2}-4)}{xy})
taylor ln(3x+1),3
taylor\:\ln(3x+1),3
derivative of sqrt(4x^2+5)
\frac{d}{dx}(\sqrt{4x^{2}+5})
derivative of 1/((t^2+3t+1)^{5/2)}
derivative\:\frac{1}{(t^{2}+3t+1)^{\frac{5}{2}}}
derivative of y=x^4+8x^2-x
derivative\:y=x^{4}+8x^{2}-x
integral of 2x^3-2/3 x^2+7x
\int\:2x^{3}-\frac{2}{3}x^{2}+7xdx
sum from n=0 to infinity of 8/(4^n)
\sum\:_{n=0}^{\infty\:}\frac{8}{4^{n}}
(\partial)/(\partial x)(-sin(x^2y)x^2)
\frac{\partial\:}{\partial\:x}(-\sin(x^{2}y)x^{2})
integral of t*1/(e^t)
\int\:t\cdot\:\frac{1}{e^{t}}dt
integral of (-2sec(x)tan(x)-3sec^2(x))
\int\:(-2\sec(x)\tan(x)-3\sec^{2}(x))dx
5t*(dy)/(dt)+3y=sqrt(t)
5t\cdot\:\frac{dy}{dt}+3y=\sqrt{t}
(dx)/(dt)=((2t^2+x^2))/(tx)
\frac{dx}{dt}=\frac{(2t^{2}+x^{2})}{tx}
y^{''}-2y^'+5y=e^xsin(x)
y^{\prime\:\prime\:}-2y^{\prime\:}+5y=e^{x}\sin(x)
integral from 0 to infinity of 1
\int\:_{0}^{\infty\:}1dx
integral of e^{-st}-te^{-st}
\int\:e^{-st}-te^{-st}dt
area y=x^3-x,y=3x
area\:y=x^{3}-x,y=3x
integral from-infinity to 0 of 1/(5-6x)
\int\:_{-\infty\:}^{0}\frac{1}{5-6x}dx
integral from 1 to 2 of (5-x)/(x^3)
\int\:_{1}^{2}\frac{5-x}{x^{3}}dx
derivative of (csc(x)^2)
\frac{d}{dx}((\csc(x))^{2})
sum from n=1 to infinity of e^{-8n}
\sum\:_{n=1}^{\infty\:}e^{-8n}
limit as t approaches pi of cos((2t)/3)
\lim\:_{t\to\:π}(\cos(\frac{2t}{3}))
derivative of 3/(x^2+10x^3-2sin(3x))
\frac{d}{dx}(\frac{3}{x^{2}}+10x^{3}-2\sin(3x))
integral of 8/(7+8x)
\int\:\frac{8}{7+8x}dx
area f(x)=-x^2+4,y+2x-4=0
area\:f(x)=-x^{2}+4,y+2x-4=0
derivative of sqrt(7-3x)
derivative\:\sqrt{7-3x}
integral from 1/2 to 2 of 1/(x^2)
\int\:_{\frac{1}{2}}^{2}\frac{1}{x^{2}}dx
area e^x,e^{4x},[0,1]
area\:e^{x},e^{4x},[0,1]
derivative of sqrt(x^3+2x)
derivative\:\sqrt{x^{3}+2x}
integral of 2/(e^{4x)}
\int\:\frac{2}{e^{4x}}dx
derivative of (2x/(1-cot(x)))
\frac{d}{dx}(\frac{2x}{1-\cot(x)})
integral of-sin^3(x)cos^2(x)
\int\:-\sin^{3}(x)\cos^{2}(x)dx
integral of (sqrt(y^2-144))/y
\int\:\frac{\sqrt{y^{2}-144}}{y}dy
derivative of f(x)=x^5cos(x)
derivative\:f(x)=x^{5}\cos(x)
integral of 1/(x(x^2+x+5))
\int\:\frac{1}{x(x^{2}+x+5)}dx
(\partial)/(\partial x)((6-x^2y^2)^2)
\frac{\partial\:}{\partial\:x}((6-x^{2}y^{2})^{2})
limit as x approaches 4+of (4+x)/(4-x)
\lim\:_{x\to\:4+}(\frac{4+x}{4-x})
limit as h approaches 0 of 6x+1+3h
\lim\:_{h\to\:0}(6x+1+3h)
inverse oflaplace {1/(s^2+s-20)}
inverselaplace\:\left\{\frac{1}{s^{2}+s-20}\right\}
derivative of arcsin(1-2x^2)
\frac{d}{dx}(\arcsin(1-2x^{2}))
derivative of e^x+x^2
\frac{d}{dx}(e^{x}+x^{2})
d/(dy)(ycos(x))
\frac{d}{dy}(y\cos(x))
(\partial)/(\partial x)(45-x^2-y^2)
\frac{\partial\:}{\partial\:x}(45-x^{2}-y^{2})
derivative of sin(2x-2pi)
\frac{d}{dx}(\sin(2x-2π))
integral of 1/(x^2+2x+5)
\int\:\frac{1}{x^{2}+2x+5}dx
(\partial)/(\partial x)(ln(x^6+1)+y^2)
\frac{\partial\:}{\partial\:x}(\ln(x^{6}+1)+y^{2})
derivative of 5/12 (3+sqrt(5)x^3)
\frac{d}{dx}(\frac{5}{12}(3+\sqrt{5})x^{3})
limit as x approaches-infinity of x^0
\lim\:_{x\to\:-\infty\:}(x^{0})
(\partial)/(\partial x)(e^y-xe^x)
\frac{\partial\:}{\partial\:x}(e^{y}-xe^{x})
derivative of (4x^2-3xe^{5x})
\frac{d}{dx}((4x^{2}-3x)e^{5x})
integral of (cos^2(x))^2
\int\:(\cos^{2}(x))^{2}dx
integral of x/(cos^2(x))
\int\:\frac{x}{\cos^{2}(x)}dx
sum from n=0 to infinity of (2n-1)/(n!)
\sum\:_{n=0}^{\infty\:}\frac{2n-1}{n!}
derivative of-x/4
\frac{d}{dx}(-\frac{x}{4})
integral of 1/(sqrt(x^2+x))
\int\:\frac{1}{\sqrt{x^{2}+x}}dx
area y=|x|,y=x^2-6
area\:y=\left|x\right|,y=x^{2}-6
derivative of 9x^2y^2=1
\frac{d}{dx}9x^{2}y^{2}=1
integral of (tan(x)+sec(x))
\int\:(\tan(x)+\sec(x))dx
(\partial)/(\partial y)((e^x)/(1+e^y))
\frac{\partial\:}{\partial\:y}(\frac{e^{x}}{1+e^{y}})
derivative of f(x)=3
derivative\:f(x)=3
d/(dθ)((csc(θ)+cot(θ))^{-1})
\frac{d}{dθ}((\csc(θ)+\cot(θ))^{-1})
(dy)/(dx)+e^{x+y}=0
\frac{dy}{dx}+e^{x+y}=0
integral of (x^2)/((x^3+5)^2)
\int\:\frac{x^{2}}{(x^{3}+5)^{2}}dx
(\partial)/(\partial x)(sqrt(4x+y^3))
\frac{\partial\:}{\partial\:x}(\sqrt{4x+y^{3}})
limit as x approaches 0 of 1/(sqrt(x))
\lim\:_{x\to\:0}(\frac{1}{\sqrt{x}})
limit as x approaches 1 of sin(pix)
\lim\:_{x\to\:1}(\sin(πx))
(dy)/(dx)= 1/2 y+x
\frac{dy}{dx}=\frac{1}{2}y+x
derivative of f(x)=(10x)/(1-x)
derivative\:f(x)=\frac{10x}{1-x}
taylor cos(x)e^x
taylor\:\cos(x)e^{x}
y^{''}=-a
y^{\prime\:\prime\:}=-a
limit as x approaches-3+of x/(x+3)
\lim\:_{x\to\:-3+}(\frac{x}{x+3})
limit as x approaches 0 of x^3e^{1/x}
\lim\:_{x\to\:0}(x^{3}e^{\frac{1}{x}})
1
..
787
788
789
790
791
..
2459