Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of f(x)= 5/(sqrt(x)),\at x= 1/4
tangent\:f(x)=\frac{5}{\sqrt{x}},\at\:x=\frac{1}{4}
integral of (y-x)
\int\:(y-x)dx
limit as x approaches-1 of (x^2-1)/(x-1)
\lim\:_{x\to\:-1}(\frac{x^{2}-1}{x-1})
integral of (2v^3-v)/(v^4-v^2)
\int\:\frac{2v^{3}-v}{v^{4}-v^{2}}dv
xy^2(dy)/(dx)=y^3-x^2
xy^{2}\frac{dy}{dx}=y^{3}-x^{2}
integral of ((e^{2x}))/(49+e^{4x)}
\int\:\frac{(e^{2x})}{49+e^{4x}}dx
(d^2)/(dx^2)(x^{6/7}+5x)
\frac{d^{2}}{dx^{2}}(x^{\frac{6}{7}}+5x)
y^'=1+ay
y^{\prime\:}=1+ay
derivative of cos(5x^2-7x(10x-7))
\frac{d}{dx}(\cos(5x^{2}-7x)(10x-7))
xy^'-3y=x^3
xy^{\prime\:}-3y=x^{3}
integral of (-4x^{3/2}+3x^{2/3}-4x^2)
\int\:(-4x^{\frac{3}{2}}+3x^{\frac{2}{3}}-4x^{2})dx
(\partial)/(\partial z)(sin(y))
\frac{\partial\:}{\partial\:z}(\sin(y))
(dy)/(dx)=((y+x))/((y-x)),y(0)=1
\frac{dy}{dx}=\frac{(y+x)}{(y-x)},y(0)=1
integral of (10X)/(X^4-13X^2+36)
\int\:\frac{10X}{X^{4}-13X^{2}+36}dX
derivative of x^{8/x}
derivative\:x^{\frac{8}{x}}
derivative of 28+(12.4)t-(0.045)t^3
derivative\:28+(12.4)t-(0.045)t^{3}
(\partial)/(\partial θ)(r(θ)cos(θ))
\frac{\partial\:}{\partial\:θ}(r(θ)\cos(θ))
integral of sin(9pi)t
\int\:\sin(9π)tdt
(\partial)/(\partial x)((4x-2y)/(4x+2y))
\frac{\partial\:}{\partial\:x}(\frac{4x-2y}{4x+2y})
integral of 1/((x+2)^{3/2)}
\int\:\frac{1}{(x+2)^{\frac{3}{2}}}dx
limit as x approaches 5 of x^2+4
\lim\:_{x\to\:5}(x^{2}+4)
integral of 3/(xsqrt(4x^2-9))
\int\:\frac{3}{x\sqrt{4x^{2}-9}}dx
integral from 0 to pi of (sin(x))/x
\int\:_{0}^{π}\frac{\sin(x)}{x}dx
derivative of f(x)=sqrt(1-6x)
derivative\:f(x)=\sqrt{1-6x}
limit as x approaches 3-of (3x+4)/(x-3)
\lim\:_{x\to\:3-}(\frac{3x+4}{x-3})
integral of sec^7(5x)tan(5x)
\int\:\sec^{7}(5x)\tan(5x)dx
integral of 3x-7
\int\:3x-7dx
tangent of f(x)=sin(x)+cos(x),\at x=0
tangent\:f(x)=\sin(x)+\cos(x),\at\:x=0
derivative of 1-x+ln(x)
\frac{d}{dx}(1-x+\ln(x))
derivative of \sqrt[7]{x^6}
derivative\:\sqrt[7]{x^{6}}
integral from 0 to a of e^{x/a}-e^{-x/a}
\int\:_{0}^{a}e^{\frac{x}{a}}-e^{-\frac{x}{a}}dx
derivative of x=6.4sin(1.2^2t^2)
derivative\:x=6.4\sin(1.2^{2}t^{2})
derivative of ln(x/5)
\frac{d}{dx}(\ln(\frac{x}{5}))
integral of 10xln(x+2)
\int\:10x\ln(x+2)dx
(\partial ^2)/(\partial x\partial y)(x^5+x^2y+x+3)
\frac{\partial\:^{2}}{\partial\:x\partial\:y}(x^{5}+x^{2}y+x+3)
derivative of-7
derivative\:-7
y^{''}-0.2y^'+0.01y=0,y(0)=10,y^'(0)=b
y^{\prime\:\prime\:}-0.2y^{\prime\:}+0.01y=0,y(0)=10,y^{\prime\:}(0)=b
integral of cos(30x)*cos(4x)*cos(4x)
\int\:\cos(30x)\cdot\:\cos(4x)\cdot\:\cos(4x)dx
y^'=x+y,y(0)=10
y^{\prime\:}=x+y,y(0)=10
(\partial)/(\partial v)({u}(v,w)+ve^w)
\frac{\partial\:}{\partial\:v}({u}(v,w)+ve^{w})
sum from n=2 to infinity of 8/(nln(n))
\sum\:_{n=2}^{\infty\:}\frac{8}{n\ln(n)}
(dy)/(dx)=(e^{2x-y})/(e^{x+y)}
\frac{dy}{dx}=\frac{e^{2x-y}}{e^{x+y}}
integral of 1/(1-2x)-cos(x/3)
\int\:\frac{1}{1-2x}-\cos(\frac{x}{3})dx
(\partial)/(\partial x)(yze^x)
\frac{\partial\:}{\partial\:x}(yze^{x})
maclaurin 1/(\sqrt[3]{x^2+8)}
maclaurin\:\frac{1}{\sqrt[3]{x^{2}+8}}
y^{''}-y^'-2y=-4t+6t^2
y^{\prime\:\prime\:}-y^{\prime\:}-2y=-4t+6t^{2}
integral of xe^6
\int\:xe^{6}dx
area \sqrt[3]{x}, 1/x ,[1,8]
area\:\sqrt[3]{x},\frac{1}{x},[1,8]
derivative of f(x)=-2x+3
derivative\:f(x)=-2x+3
integral of (x*cos(x))
\int\:(x\cdot\:\cos(x))dx
integral of x^2sec^2(x^3+1)
\int\:x^{2}\sec^{2}(x^{3}+1)dx
integral from 0 to 4 of 1/(u^2-16)
\int\:_{0}^{4}\frac{1}{u^{2}-16}du
sum from n=1 to infinity of 1/(n+n^2)
\sum\:_{n=1}^{\infty\:}\frac{1}{n+n^{2}}
(\partial)/(\partial x)(6x^8y^6+2x^7y^4)
\frac{\partial\:}{\partial\:x}(6x^{8}y^{6}+2x^{7}y^{4})
derivative of f(x)=-tan(x)-5cot(x)
derivative\:f(x)=-\tan(x)-5\cot(x)
derivative of x(x-1^3)
\frac{d}{dx}(x(x-1)^{3})
integral of-x^2(x+1)^3(x-1)
\int\:-x^{2}(x+1)^{3}(x-1)dx
(\partial)/(\partial y)(x^2+2y^2)
\frac{\partial\:}{\partial\:y}(x^{2}+2y^{2})
derivative of arctan((1-x/(1+x)))
\frac{d}{dx}(\arctan(\frac{1-x}{1+x}))
integral from 0 to 3 of (-x^2+x-1)
\int\:_{0}^{3}(-x^{2}+x-1)dx
integral from 1 to 16 of 1/(sqrt(x))
\int\:_{1}^{16}\frac{1}{\sqrt{x}}dx
integral of (2x)/(3(x^2+1))
\int\:\frac{2x}{3(x^{2}+1)}dx
derivative of x^{12}ln(x)
\frac{d}{dx}(x^{12}\ln(x))
integral of (16)/(x(x^2+4)^2)
\int\:\frac{16}{x(x^{2}+4)^{2}}dx
derivative of (xsin(2x)^{3/2})
\frac{d}{dx}((x\sin(2x))^{\frac{3}{2}})
integral of ((x+16))/((x^2+2x-8))
\int\:\frac{(x+16)}{(x^{2}+2x-8)}dx
(\partial)/(\partial α)({K}(α)(α)^αL^{1-α})
\frac{\partial\:}{\partial\:α}({K}(α)(α)^{α}L^{1-α})
tangent of y=11x^2,(-2,44)
tangent\:y=11x^{2},(-2,44)
integral of 1/(r(2-r^2))
\int\:\frac{1}{r(2-r^{2})}dr
limit as x approaches 1 of (3x)/(x^2-1)
\lim\:_{x\to\:1}(\frac{3x}{x^{2}-1})
taylor e^{-5x}
taylor\:e^{-5x}
integral from 1 to 9 of 1/(2x)
\int\:_{1}^{9}\frac{1}{2x}dx
derivative of 7(2xe^x+e^xx^2)
\frac{d}{dx}(7(2xe^{x}+e^{x}x^{2}))
integral of y+xe^y
\int\:y+xe^{y}dy
limit as x approaches infinity of 1*x
\lim\:_{x\to\:\infty\:}(1\cdot\:x)
derivative of (x^3-8/(x^3+8))
\frac{d}{dx}(\frac{x^{3}-8}{x^{3}+8})
(\partial)/(\partial x)(x^2y-y^2-7)
\frac{\partial\:}{\partial\:x}(x^{2}y-y^{2}-7)
integral of sec^5(4x)tan(4x)
\int\:\sec^{5}(4x)\tan(4x)dx
limit as x approaches-1 of 10x
\lim\:_{x\to\:-1}(10x)
implicit xy+5e^y=5e
implicit\:xy+5e^{y}=5e
derivative of tan(ax+b)
\frac{d}{dx}(\tan(ax+b))
(\partial)/(\partial x)(3y^2x-y^3-x^4)
\frac{\partial\:}{\partial\:x}(3y^{2}x-y^{3}-x^{4})
x^2y^{''}=y^'+(y^')^2
x^{2}y^{\prime\:\prime\:}=y^{\prime\:}+(y^{\prime\:})^{2}
(\partial)/(\partial x)(x^{xy})
\frac{\partial\:}{\partial\:x}(x^{xy})
integral of 1/(x^4-16)
\int\:\frac{1}{x^{4}-16}dx
integral from 0 to 1 of 5e^{5sqrt(x)}
\int\:_{0}^{1}5e^{5\sqrt{x}}dx
derivative of (9x/(sqrt(x)))
\frac{d}{dx}(\frac{9x}{\sqrt{x}})
limit as x approaches 0+of x^{x^8}
\lim\:_{x\to\:0+}(x^{x^{8}})
integral of 36x^3(3x^4+3)^5
\int\:36x^{3}(3x^{4}+3)^{5}dx
limit as y approaches 0 of 0/y
\lim\:_{y\to\:0}(\frac{0}{y})
tangent of f(x)=(x^2-3)(x^3-2x),\at x=-2
tangent\:f(x)=(x^{2}-3)(x^{3}-2x),\at\:x=-2
(\partial)/(\partial x)(xe^y+x^2cos(y))
\frac{\partial\:}{\partial\:x}(xe^{y}+x^{2}\cos(y))
integral of e^{1.25x}
\int\:e^{1.25x}dx
derivative of (21x^2+6x-6)/(2xsqrt(x))
derivative\:\frac{21x^{2}+6x-6}{2x\sqrt{x}}
integral of 1/(sqrt(9x^2-25))
\int\:\frac{1}{\sqrt{9x^{2}-25}}dx
integral of 1/(sqrt(x+1)+\sqrt{x-1)}
\int\:\frac{1}{\sqrt{x+1}+\sqrt{x-1}}dx
area f(x)=x^2-1,g(x)=-x+2,0,1
area\:f(x)=x^{2}-1,g(x)=-x+2,0,1
integral of (2-x)3^{(2-x)^2}
\int\:(2-x)3^{(2-x)^{2}}dx
integral from 0 to 3 of 1/(sqrt(9-x^2))
\int\:_{0}^{3}\frac{1}{\sqrt{9-x^{2}}}dx
derivative of-AB^{-x}+C
\frac{d}{dx}(-AB^{-x}+C)
1
..
828
829
830
831
832
..
2459