Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of e^{(4x)}
derivative\:e^{(4x)}
integral of x^2sqrt(x^3+3)
\int\:x^{2}\sqrt{x^{3}+3}dx
integral of 19x^3e^x
\int\:19x^{3}e^{x}dx
(\partial)/(\partial y)(3y^2+10x^2y^2)
\frac{\partial\:}{\partial\:y}(3y^{2}+10x^{2}y^{2})
derivative of 4/(1+x^2)
derivative\:\frac{4}{1+x^{2}}
derivative of 1/e
\frac{d}{dx}(\frac{1}{e})
integral of 1/((e^{2x)+4)}
\int\:\frac{1}{(e^{2x}+4)}dx
(\partial)/(\partial y)(2xy+y^4)
\frac{\partial\:}{\partial\:y}(2xy+y^{4})
integral of (-x^2)/2
\int\:\frac{-x^{2}}{2}dx
integral from-pi to pi of x^2
\int\:_{-π}^{π}x^{2}dx
limit as x approaches 4 of x/(4-x)-x^3
\lim\:_{x\to\:4}(\frac{x}{4-x}-x^{3})
y^{''}+8y^'+15y=cos(x)
y^{\prime\:\prime\:}+8y^{\prime\:}+15y=\cos(x)
tangent of f(x)=3xcos(x),(pi,-3pi)
tangent\:f(x)=3x\cos(x),(π,-3π)
(1-e^{-x}-xe^{-x})^'
(1-e^{-x}-xe^{-x})^{\prime\:}
(\partial)/(\partial x)(x^3y-x)
\frac{\partial\:}{\partial\:x}(x^{3}y-x)
integral of (x^2+1)/(sqrt(x^3+3x))
\int\:\frac{x^{2}+1}{\sqrt{x^{3}+3x}}dx
integral of e^x*(-3)e^{e^x+2}
\int\:e^{x}\cdot\:(-3)e^{e^{x}+2}dx
derivative of x5^{2x}
\frac{d}{dx}(x5^{2x})
integral from 0 to sqrt(3 of)1
\int\:_{0}^{\sqrt{3}}1
integral of (sqrt(9+x^2))/(x^4)
\int\:\frac{\sqrt{9+x^{2}}}{x^{4}}dx
slope of y=x^3-9x,(1,-8)
slope\:y=x^{3}-9x,(1,-8)
integral from 0 to 1 of (x^2+1)e^{2x}
\int\:_{0}^{1}(x^{2}+1)e^{2x}dx
tangent of 6x^2-4xy+4y^2-14=0,(1,2)
tangent\:6x^{2}-4xy+4y^{2}-14=0,(1,2)
tangent of y=sqrt(x+1),(8,3)
tangent\:y=\sqrt{x+1},(8,3)
derivative of f(x)=x^4-2x^3+x-1
derivative\:f(x)=x^{4}-2x^{3}+x-1
d/(dt)(e^{{r}(t)t})
\frac{d}{dt}(e^{{r}(t)t})
area-x^2+9x,x^2-5x
area\:-x^{2}+9x,x^{2}-5x
derivative of y=sqrt(3-5x)
derivative\:y=\sqrt{3-5x}
integral from 4 to 9 of 1/(8-sqrt(x))
\int\:_{4}^{9}\frac{1}{8-\sqrt{x}}dx
integral of e^{-xt}
\int\:e^{-xt}dx
derivative of 3ln(x+ln(y))
\frac{d}{dx}(3\ln(x)+\ln(y))
slope of (1,3),(-2,-3)
slope\:(1,3),(-2,-3)
(\partial)/(\partial y)(e^{x^2+y})
\frac{\partial\:}{\partial\:y}(e^{x^{2}+y})
(dy)/(dt)=8y,y(4)=4
\frac{dy}{dt}=8y,y(4)=4
inverse oflaplace 1/(2s)
inverselaplace\:\frac{1}{2s}
f(x)=cos(1/x)
f(x)=\cos(\frac{1}{x})
derivative of csc(sqrt(x^2-1))
\frac{d}{dx}(\csc(\sqrt{x^{2}-1}))
derivative of (3^2+5x)^4(2x-2)^3
derivative\:(3^{2}+5x)^{4}(2x-2)^{3}
(dy)/(dx)+y^3x+y=0
\frac{dy}{dx}+y^{3}x+y=0
derivative of-2cos(2x)
derivative\:-2\cos(2x)
derivative of f(x)=25^x
derivative\:f(x)=25^{x}
integral of-6x(-4x^2+6)^5
\int\:-6x(-4x^{2}+6)^{5}dx
integral of 9/(15sin(x)-8cos(x))
\int\:\frac{9}{15\sin(x)-8\cos(x)}dx
derivative of (2x/(sqrt(a^2-x^2)))
\frac{d}{dx}(\frac{2x}{\sqrt{a^{2}-x^{2}}})
sum from n=1 to infinity of 1/(4n^2+7)
\sum\:_{n=1}^{\infty\:}\frac{1}{4n^{2}+7}
y^{''}+ay=0,y(0)=1,y(1)=0
y^{\prime\:\prime\:}+ay=0,y(0)=1,y(1)=0
slope of (8.2)(9.3)
slope\:(8.2)(9.3)
limit as x approaches-2 of (1+x)/(x^3+8)
\lim\:_{x\to\:-2}(\frac{1+x}{x^{3}+8})
derivative of 3xsqrt(3x^2+1)
derivative\:3x\sqrt{3x^{2}+1}
integral of (tan^2(y)+1)
\int\:(\tan^{2}(y)+1)dy
y^{''}-4y^'+40y=0
y^{\prime\:\prime\:}-4y^{\prime\:}+40y=0
integral of sqrt((3x+1)^2-2)
\int\:\sqrt{(3x+1)^{2}-2}dx
derivative of sin(2x+5)
\frac{d}{dx}(\sin(2x+5))
integral of e^{e^x}e^x
\int\:e^{e^{x}}e^{x}dx
derivative of 2.5^x
\frac{d}{dx}(2.5^{x})
tangent of y=x^2-sqrt(x),(4,14)
tangent\:y=x^{2}-\sqrt{x},(4,14)
integral from 0 to 3 of 2pi(3-x)(9-x^2)
\int\:_{0}^{3}2π(3-x)(9-x^{2})dx
derivative of-4e^{-x}+1
derivative\:-4e^{-x}+1
integral of 8sqrt(x)e^{sqrt(x)}
\int\:8\sqrt{x}e^{\sqrt{x}}dx
tangent of f(x)=(1+2x)^2,\at x=3
tangent\:f(x)=(1+2x)^{2},\at\:x=3
laplacetransform g
laplacetransform\:g
derivative of t^2+5
derivative\:t^{2}+5
derivative of 1/((x^5-x+1^9))
\frac{d}{dx}(\frac{1}{(x^{5}-x+1)^{9}})
y^{''}-26y^'+169y=0
y^{\prime\:\prime\:}-26y^{\prime\:}+169y=0
integral of \sqrt[10]{x}+\sqrt[11]{x}
\int\:\sqrt[10]{x}+\sqrt[11]{x}dx
xy+2x((dy)/(dx))=y
xy+2x(\frac{dy}{dx})=y
integral of (3x)/(sqrt(1-x^2))
\int\:\frac{3x}{\sqrt{1-x^{2}}}dx
derivative of x(x-6)^2
derivative\:x(x-6)^{2}
derivative of (24x^2+36x)/(2x+2)
derivative\:\frac{24x^{2}+36x}{2x+2}
derivative of 7sin(xe^{-x}-1)
\frac{d}{dx}(7\sin(x)e^{-x}-1)
(\partial)/(\partial x)(e^{2x}-xcos(xy))
\frac{\partial\:}{\partial\:x}(e^{2x}-x\cos(xy))
derivative of 4x^2-2x
\frac{d}{dx}(4x^{2}-2x)
integral of 1/(x^3-x)
\int\:\frac{1}{x^{3}-x}dx
2y^{''}+y^'+3y=3cos(3t)+2sin(3t)
2y^{\prime\:\prime\:}+y^{\prime\:}+3y=3\cos(3t)+2\sin(3t)
integral of 3/(1+t^2)
\int\:\frac{3}{1+t^{2}}dt
integral of (-2x^7-4x^4)/(x^5)
\int\:\frac{-2x^{7}-4x^{4}}{x^{5}}dx
integral from 0 to 2 of pi(2x-x^2)^2
\int\:_{0}^{2}π(2x-x^{2})^{2}dx
derivative of e^xcos(6x)
\frac{d}{dx}(e^{x}\cos(6x))
integral from-1 to 3 of (x^3+5x)
\int\:_{-1}^{3}(x^{3}+5x)dx
limit as y approaches infinity of e^y
\lim\:_{y\to\:\infty\:}(e^{y})
integral of 2xsqrt(x^2+2)
\int\:2x\sqrt{x^{2}+2}dx
integral of 8tan^4(x)sec^6(x)
\int\:8\tan^{4}(x)\sec^{6}(x)dx
derivative of-e/x
derivative\:-\frac{e}{x}
d/(dh)(pi{r}^2h)
\frac{d}{dh}(π{r}^{2}h)
integral from 1 to 4 of 1/(x(x-5))
\int\:_{1}^{4}\frac{1}{x(x-5)}dx
y^'(x^2+1)+3x(y-1)=0
y^{\prime\:}(x^{2}+1)+3x(y-1)=0
integral of 7xsin(2x)
\int\:7x\sin(2x)dx
limit as x approaches 2-of 2/(2-x)
\lim\:_{x\to\:2-}(\frac{2}{2-x})
limit as t approaches 2 of ln(t^3)
\lim\:_{t\to\:2}(\ln(t^{3}))
(1/x)dy=sin(x)(y^3+y)dx
(\frac{1}{x})dy=\sin(x)(y^{3}+y)dx
limit as x approaches 0-of e^{-x}
\lim\:_{x\to\:0-}(e^{-x})
tangent of f(x)= 7/x ,\at x=2,x=7
tangent\:f(x)=\frac{7}{x},\at\:x=2,x=7
(\partial)/(\partial y)(3x^2+3y^2-15)
\frac{\partial\:}{\partial\:y}(3x^{2}+3y^{2}-15)
derivative of y=sqrt(1-x)
derivative\:y=\sqrt{1-x}
limit as x approaches-2 of (x+2)/(x+2)
\lim\:_{x\to\:-2}(\frac{x+2}{x+2})
derivative of f(x)=-2ln(x)+x^2-4
derivative\:f(x)=-2\ln(x)+x^{2}-4
e^xydy-(e^{-y}+e^{-2x-y})dx=0
e^{x}ydy-(e^{-y}+e^{-2x-y})dx=0
integral of-2e^{4x}
\int\:-2e^{4x}dx
(\partial)/(\partial x)(x^{-1})
\frac{\partial\:}{\partial\:x}(x^{-1})
inverse oflaplace (s+2)/(s(s+1)(s+3))
inverselaplace\:\frac{s+2}{s(s+1)(s+3)}
1
..
935
936
937
938
939
..
2459