Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 1/(1-4x^2)
\int\:\frac{1}{1-4x^{2}}dx
tangent of f(x)=-5-3x^2,-53,\at x=4
tangent\:f(x)=-5-3x^{2},-53,\at\:x=4
slope of (-3.2)(7.6)
slope\:(-3.2)(7.6)
integral of x^2(x^3-1)^{10}
\int\:x^{2}(x^{3}-1)^{10}dx
limit as x approaches-3 of 7/(x^7)
\lim\:_{x\to\:-3}(\frac{7}{x^{7}})
integral of xsqrt(2)
\int\:x\sqrt{2}dx
limit as z approaches 0 of 1/(1+1/z)
\lim\:_{z\to\:0}(\frac{1}{1+\frac{1}{z}})
area 4x^2,40x-100,0,5
area\:4x^{2},40x-100,0,5
(dy)/(dx)+2xy^2=0
\frac{dy}{dx}+2xy^{2}=0
derivative of e^{x/(x-3})
\frac{d}{dx}(e^{\frac{x}{x-3}})
limit as x approaches 8 of x^2-5x-11
\lim\:_{x\to\:8}(x^{2}-5x-11)
(dy)/(dx)=5x^4-sec^2(x)
\frac{dy}{dx}=5x^{4}-\sec^{2}(x)
integral of (8x+7)*ln(x)
\int\:(8x+7)\cdot\:\ln(x)dx
(\partial)/(\partial x)(2y^2-2xy+7x-5)
\frac{\partial\:}{\partial\:x}(2y^{2}-2xy+7x-5)
integral of (x*sec^2(x))
\int\:(x\cdot\:\sec^{2}(x))dx
integral of x^7+7x+7/x+7
\int\:x^{7}+7x+\frac{7}{x}+7dx
integral of e^{x^3+5}x^2
\int\:e^{x^{3}+5}x^{2}dx
integral of (x-6)sqrt(x+7)
\int\:(x-6)\sqrt{x+7}dx
derivative of x^2-4x+7
\frac{d}{dx}(x^{2}-4x+7)
integral of (x^2+2x+8)/(x^4-4x^2)
\int\:\frac{x^{2}+2x+8}{x^{4}-4x^{2}}dx
integral from 1 to 2 of (-1ln(x))/(x^2)
\int\:_{1}^{2}\frac{-1\ln(x)}{x^{2}}dx
(\partial)/(\partial x)(2x^2+y^2)
\frac{\partial\:}{\partial\:x}(2x^{2}+y^{2})
limit as n approaches infinity of 1.04^n
\lim\:_{n\to\:\infty\:}(1.04^{n})
derivative of-x^3+6x^2-9x
\frac{d}{dx}(-x^{3}+6x^{2}-9x)
integral of (-5)/(sqrt(x^2+16))
\int\:\frac{-5}{\sqrt{x^{2}+16}}dx
integral of (2e^{-6/(x^4)})/(x^5)
\int\:\frac{2e^{-\frac{6}{x^{4}}}}{x^{5}}dx
(d^2y)/(dt^2)-8(dy)/(dt)+16y=0
\frac{d^{2}y}{dt^{2}}-8\frac{dy}{dt}+16y=0
tangent of f(x)=x^3,\at x=1
tangent\:f(x)=x^{3},\at\:x=1
derivative of y=ln(18x^2-5x+11)
derivative\:y=\ln(18x^{2}-5x+11)
derivative of 2^{x+3}
derivative\:2^{x+3}
integral of (x^3)/(\sqrt[3]{x^2+3)}
\int\:\frac{x^{3}}{\sqrt[3]{x^{2}+3}}dx
laplacetransform Y^3
laplacetransform\:Y^{3}
integral of y/4
\int\:\frac{y}{4}dy
integral of 3x^2-2xy
\int\:3x^{2}-2xydx
integral of ((2x^2+1))/x
\int\:\frac{(2x^{2}+1)}{x}dx
derivative of sech^2(x-1)
\frac{d}{dx}(\sech^{2}(x-1))
y^{''}-4y^'+7y=xe^x
y^{\prime\:\prime\:}-4y^{\prime\:}+7y=xe^{x}
derivative of f(x)=sqrt(1/(x^{31))}
derivative\:f(x)=\sqrt{\frac{1}{x^{31}}}
derivative of ln(3^{x^2})
\frac{d}{dx}(\ln(3^{x^{2}}))
limit as x approaches 4 of 3x^3-2x^2+x-7
\lim\:_{x\to\:4}(3x^{3}-2x^{2}+x-7)
derivative of ((3x^2))/4+x/3
derivative\:\frac{(3x^{2})}{4}+\frac{x}{3}
integral of (3-18x)/(sqrt(25-9x^2))
\int\:\frac{3-18x}{\sqrt{25-9x^{2}}}dx
derivative of ln((4x)/(x+7))
derivative\:\ln(\frac{4x}{x+7})
integral of ((e^x))/(e^{2x)+3}
\int\:\frac{(e^{x})}{e^{2x}+3}dx
integral from 0 to 1 of xsqrt(x^2+2)
\int\:_{0}^{1}x\sqrt{x^{2}+2}dx
2(dy)/(dx)+y=0
2\frac{dy}{dx}+y=0
derivative of y=x^{mx}
derivative\:y=x^{mx}
(\partial)/(\partial x)(y^2+2e^{x^2}xy)
\frac{\partial\:}{\partial\:x}(y^{2}+2e^{x^{2}}xy)
integral of (ln(x^2))/2
\int\:\frac{\ln(x^{2})}{2}dx
taylor x^3+8x-1,-1
taylor\:x^{3}+8x-1,-1
(\partial)/(\partial y)(sqrt(29-x^2-4y^2))
\frac{\partial\:}{\partial\:y}(\sqrt{29-x^{2}-4y^{2}})
derivative of 4^xlog_{4}(x)
\frac{d}{dx}(4^{x}\log_{4}(x))
derivative of F(x)=e^{x^2}
derivative\:F(x)=e^{x^{2}}
derivative of sqrt(-x^2)
\frac{d}{dx}(\sqrt{-x^{2}})
integral from 0 to pi/6 of cos(8x)
\int\:_{0}^{\frac{π}{6}}\cos(8x)dx
integral of 1/2 x^3
\int\:\frac{1}{2}x^{3}dx
integral from 0 to 4 of sqrt(1+\sqrt{x)}
\int\:_{0}^{4}\sqrt{1+\sqrt{x}}dx
(\partial)/(\partial x)(2^x+2^y)
\frac{\partial\:}{\partial\:x}(2^{x}+2^{y})
(\partial)/(\partial x)(3x^2-6x+3y^2)
\frac{\partial\:}{\partial\:x}(3x^{2}-6x+3y^{2})
integral of x^2e
\int\:x^{2}edx
laplacetransform sin(100*t)
laplacetransform\:\sin(100\cdot\:t)
8y^{''}-8y^'+52y=0
8y^{\prime\:\prime\:}-8y^{\prime\:}+52y=0
derivative of f(x)=(sqrt(x^2+1))/x
derivative\:f(x)=\frac{\sqrt{x^{2}+1}}{x}
sum from n=1 to infinity of 5/(n(n+2))
\sum\:_{n=1}^{\infty\:}\frac{5}{n(n+2)}
derivative of (xsqrt(x+1)/(x+1))
\frac{d}{dx}(\frac{x\sqrt{x+1}}{x+1})
y^'+6y=e^t
y^{\prime\:}+6y=e^{t}
integral of 5/(3-2cos(x))
\int\:\frac{5}{3-2\cos(x)}dx
limit as x approaches 3 of 4pi
\lim\:_{x\to\:3}(4π)
(\partial)/(\partial x)(xcos(y/z))
\frac{\partial\:}{\partial\:x}(x\cos(\frac{y}{z}))
derivative of x+e^{-x}
\frac{d}{dx}(x+e^{-x})
(\partial)/(\partial y)(3x^2y^4)
\frac{\partial\:}{\partial\:y}(3x^{2}y^{4})
derivative of (x-2/(sqrt(x)-\sqrt{2)})
\frac{d}{dx}(\frac{x-2}{\sqrt{x}-\sqrt{2}})
limit as x approaches 0 of sin(-1/x)
\lim\:_{x\to\:0}(\sin(-\frac{1}{x}))
derivative of f(x)=|x^3-3x^2+2|
derivative\:f(x)=\left|x^{3}-3x^{2}+2\right|
(dy)/(dt)=((te^t))/(ysqrt(5+y^2))
\frac{dy}{dt}=\frac{(te^{t})}{y\sqrt{5+y^{2}}}
(\partial)/(\partial x)(cx)
\frac{\partial\:}{\partial\:x}(cx)
tangent of f(x)= 8/x ,\at x=2
tangent\:f(x)=\frac{8}{x},\at\:x=2
integral of (7x^2+13x)/(x^3+x^2-x-1)
\int\:\frac{7x^{2}+13x}{x^{3}+x^{2}-x-1}dx
(\partial)/(\partial x)(6x^{1/3}y^{2/3})
\frac{\partial\:}{\partial\:x}(6x^{\frac{1}{3}}y^{\frac{2}{3}})
d/(da)((cos^2(a))/(sin(a)-1))
\frac{d}{da}(\frac{\cos^{2}(a)}{\sin(a)-1})
tangent of f(x)=x^4+4x^2-x,(1,4)
tangent\:f(x)=x^{4}+4x^{2}-x,(1,4)
integral of (x^2)/(x^2+16)
\int\:\frac{x^{2}}{x^{2}+16}dx
sum from n=1 to infinity of (1000)/(5^n)
\sum\:_{n=1}^{\infty\:}\frac{1000}{5^{n}}
laplacetransform 5+4e^{-2t}
laplacetransform\:5+4e^{-2t}
integral of sqrt((2x))
\int\:\sqrt{(2x)}dx
integral of x+y
\int\:x+ydx
integral of ycos((y^2)/(x^2))
\int\:y\cos(\frac{y^{2}}{x^{2}})dy
area x^2-43,5-2x
area\:x^{2}-43,5-2x
integral of (x^2-8x-13)/((x-1)^2(x^2+1))
\int\:\frac{x^{2}-8x-13}{(x-1)^{2}(x^{2}+1)}dx
area 2x=y^2,x+y=4,x+y=12
area\:2x=y^{2},x+y=4,x+y=12
derivative of xe^{xa}
\frac{d}{dx}(xe^{xa})
limit as x approaches infinity of-1^xx
\lim\:_{x\to\:\infty\:}(-1^{x}x)
derivative of 4sin^5(sqrt(x))
\frac{d}{dx}(4\sin^{5}(\sqrt{x}))
integral of (1+1/(2x))
\int\:(1+\frac{1}{2x})dx
tangent of x/(1+x^2)
tangent\:\frac{x}{1+x^{2}}
(\partial)/(\partial y)(sin(x^2+xy))
\frac{\partial\:}{\partial\:y}(\sin(x^{2}+xy))
y^{''}-y=18t
y^{\prime\:\prime\:}-y=18t
derivative of-x^2+6x
\frac{d}{dx}(-x^{2}+6x)
tangent of f(x)=-5x^2,\at x=6
tangent\:f(x)=-5x^{2},\at\:x=6
(\partial)/(\partial x)(sqrt(x-y))
\frac{\partial\:}{\partial\:x}(\sqrt{x-y})
1
..
964
965
966
967
968
..
2459