extreme f(x)=2x^3+3x^2-36x-20
|
extreme\:f(x)=2x^{3}+3x^{2}-36x-20
|
extreme x^3+3x^2y+y^3-y
|
extreme\:x^{3}+3x^{2}y+y^{3}-y
|
extreme f(x,y)=-8xy-5x^2-6y^2+38x+36y+7
|
extreme\:f(x,y)=-8xy-5x^{2}-6y^{2}+38x+36y+7
|
extreme f(x,y)=x^2+2y^2-8x+8y
|
extreme\:f(x,y)=x^{2}+2y^{2}-8x+8y
|
extreme f(x)=2+4x-x^4
|
extreme\:f(x)=2+4x-x^{4}
|
extreme f(x,y)=5x+6y
|
extreme\:f(x,y)=5x+6y
|
extreme x^2+6xy+2y^2
|
extreme\:x^{2}+6xy+2y^{2}
|
extreme+(x+1/x+8)/(x+1/x+2)
|
extreme\:+\frac{x+\frac{1}{x}+8}{x+\frac{1}{x}+2}
|
extreme f(x,y)=6(1-x^{(2)})*(1-y^{(2)})
|
extreme\:f(x,y)=6(1-x^{(2)})\cdot\:(1-y^{(2)})
|
extreme f(x)=-2x^2ln(x)+17x^2
|
extreme\:f(x)=-2x^{2}\ln(x)+17x^{2}
|
extreme |x+4|
|
extreme\:\left|x+4\right|
|
extreme f(x)=(2x^2+3)/(x^2-1)
|
extreme\:f(x)=\frac{2x^{2}+3}{x^{2}-1}
|
extreme f(x)=4x+8cos(x)
|
extreme\:f(x)=4x+8\cos(x)
|
extreme f(y)=x^2+y^2-20x+16y-9
|
extreme\:f(y)=x^{2}+y^{2}-20x+16y-9
|
extreme f(x,y)=x^4+y^4+4xy
|
extreme\:f(x,y)=x^{4}+y^{4}+4xy
|
extreme 9/2 x^2-ln(x)
|
extreme\:\frac{9}{2}x^{2}-\ln(x)
|
extreme f(x)=2x-0.3y
|
extreme\:f(x)=2x-0.3y
|
extreme f(x)=1-(x-2)^{4/5}
|
extreme\:f(x)=1-(x-2)^{\frac{4}{5}}
|
extreme f(x,y)=(x^3-y^3)/(x-y)
|
extreme\:f(x,y)=\frac{x^{3}-y^{3}}{x-y}
|
extreme f(x)=x^4-98x^2-1,(-8,8)
|
extreme\:f(x)=x^{4}-98x^{2}-1,(-8,8)
|
extreme f(x,y)=(x-1)^2+(y-4)^2
|
extreme\:f(x,y)=(x-1)^{2}+(y-4)^{2}
|
extreme 5x+(100)/x
|
extreme\:5x+\frac{100}{x}
|
extreme f(x)=3x^3-9x^2-315x+7
|
extreme\:f(x)=3x^{3}-9x^{2}-315x+7
|
extreme f(x)=(2x^2)/(x-2),(-2,1)
|
extreme\:f(x)=\frac{2x^{2}}{x-2},(-2,1)
|
extreme f(x)=250(0.9)^x,0<= x<= 6
|
extreme\:f(x)=250(0.9)^{x},0\le\:x\le\:6
|
extreme yln(x)+xy^2
|
extreme\:y\ln(x)+xy^{2}
|
extreme 2x^3-9x^2+12x-8
|
extreme\:2x^{3}-9x^{2}+12x-8
|
extreme f(x)=4x^2-xy+2y^2
|
extreme\:f(x)=4x^{2}-xy+2y^{2}
|
extreme f(x)=(-3x+y-4)/(4x^2-3y+2)
|
extreme\:f(x)=\frac{-3x+y-4}{4x^{2}-3y+2}
|
extreme f(x)=2x+5x^{-1}
|
extreme\:f(x)=2x+5x^{-1}
|
extreme a-(ab)/((a+b))
|
extreme\:a-\frac{ab}{(a+b)}
|
extreme f(x)=(x-2)(x-3)^{1/2}
|
extreme\:f(x)=(x-2)(x-3)^{\frac{1}{2}}
|
extreme f(x)=x^2+9,-1<= x<= 4
|
extreme\:f(x)=x^{2}+9,-1\le\:x\le\:4
|
extreme f(x)=x(20-2x)(16-x),0<x<10
|
extreme\:f(x)=x(20-2x)(16-x),0<x<10
|
extreme f(x)= 5/(x^2+1)-1
|
extreme\:f(x)=\frac{5}{x^{2}+1}-1
|
extreme f(x,y)=x^2+y^2-20x+4y-10
|
extreme\:f(x,y)=x^{2}+y^{2}-20x+4y-10
|
extreme 2x^3+6x^2-90x+7,-5<= x<= 6
|
extreme\:2x^{3}+6x^{2}-90x+7,-5\le\:x\le\:6
|
extreme f(x)=-5/4 x^2+5/2 x+7/4
|
extreme\:f(x)=-\frac{5}{4}x^{2}+\frac{5}{2}x+\frac{7}{4}
|
extreme f(x,y)=x+y-3/2 (x^2+y^2+1)
|
extreme\:f(x,y)=x+y-\frac{3}{2}(x^{2}+y^{2}+1)
|
extreme f(x)=e^{2x}+e^{(-x)}
|
extreme\:f(x)=e^{2x}+e^{(-x)}
|
extreme-x^2+8x-9
|
extreme\:-x^{2}+8x-9
|
extreme f(x)=x^3-12x^2-27x+2,1<= x<= 10
|
extreme\:f(x)=x^{3}-12x^{2}-27x+2,1\le\:x\le\:10
|
extreme 85y^{35}
|
extreme\:85y^{35}
|
extreme 2x^3+9x^2-24x
|
extreme\:2x^{3}+9x^{2}-24x
|
extreme f(x)=x^3-x^2-x-4
|
extreme\:f(x)=x^{3}-x^{2}-x-4
|
extreme f(x)=x^3-x^2-x-5
|
extreme\:f(x)=x^{3}-x^{2}-x-5
|
extreme f(x,y)=3x^2+3y-y^3
|
extreme\:f(x,y)=3x^{2}+3y-y^{3}
|
extreme f(x)=12-3x^2,(-2,5)
|
extreme\:f(x)=12-3x^{2},(-2,5)
|
extreme f(x)=x^3-x^2-x-1
|
extreme\:f(x)=x^{3}-x^{2}-x-1
|
extreme f(x)=4xy+120y-20y^2-1/10 x^2y-80
|
extreme\:f(x)=4xy+120y-20y^{2}-\frac{1}{10}x^{2}y-80
|
derivative of x^3y^2
|
\frac{d}{dx}(x^{3}y^{2})
|
extreme y=(x^3)/3-x^2-3x
|
extreme\:y=\frac{x^{3}}{3}-x^{2}-3x
|
extreme f(x)=5+x+x^2
|
extreme\:f(x)=5+x+x^{2}
|
extreme y=x^2+(16)/x
|
extreme\:y=x^{2}+\frac{16}{x}
|
extreme f(x)=2x^3-3x^2-252x
|
extreme\:f(x)=2x^{3}-3x^{2}-252x
|
extreme y=2x^3+ax^2-12x-4,x=1
|
extreme\:y=2x^{3}+ax^{2}-12x-4,x=1
|
extreme 4ap+50p-9p^2-1/10 a^2p-110
|
extreme\:4ap+50p-9p^{2}-\frac{1}{10}a^{2}p-110
|
extreme 2x^3+5x^2+5y^3-5y^2+10
|
extreme\:2x^{3}+5x^{2}+5y^{3}-5y^{2}+10
|
extreme f(x,y)=x^3+3x^2+6xy+y^2
|
extreme\:f(x,y)=x^{3}+3x^{2}+6xy+y^{2}
|
extreme ((2x+1))/((e^{x^2))}
|
extreme\:\frac{(2x+1)}{(e^{x^{2}})}
|
extreme f(y)=3y^2-3x^2-6y
|
extreme\:f(y)=3y^{2}-3x^{2}-6y
|
extreme f(x,y)=x^3y+12yx^2-8y
|
extreme\:f(x,y)=x^{3}y+12yx^{2}-8y
|
extreme f(x,y)=2e^{-y}(x^2+y^2)+5
|
extreme\:f(x,y)=2e^{-y}(x^{2}+y^{2})+5
|
extreme f(x)=(sqrt(5-x^2))/x
|
extreme\:f(x)=\frac{\sqrt{5-x^{2}}}{x}
|
extreme x^2-14x+2
|
extreme\:x^{2}-14x+2
|
extreme f(x)=ln(2x-x^2)
|
extreme\:f(x)=\ln(2x-x^{2})
|
extreme y=2x^2-5x+4-10
|
extreme\:y=2x^{2}-5x+4-10
|
extreme x^4-4x^3-18x^2-20x-12
|
extreme\:x^{4}-4x^{3}-18x^{2}-20x-12
|
extreme-0.015x^2+1.24x-7.4
|
extreme\:-0.015x^{2}+1.24x-7.4
|
extreme f(x,y)=-3y^2+18y-x^2
|
extreme\:f(x,y)=-3y^{2}+18y-x^{2}
|
extreme f(x,y)=yln(2x+y)
|
extreme\:f(x,y)=y\ln(2x+y)
|
extreme f(x,y)=5x^2+5x-2y+4y^2
|
extreme\:f(x,y)=5x^{2}+5x-2y+4y^{2}
|
extreme f(x,y)=x^2+y^2-10x+16y-6
|
extreme\:f(x,y)=x^{2}+y^{2}-10x+16y-6
|
extreme f(x)=e^{-((x-3)^2)/2}(-x+3)
|
extreme\:f(x)=e^{-\frac{(x-3)^{2}}{2}}(-x+3)
|
extreme (8x^3)/3+6x^2-8x,-3<= x<= 1
|
extreme\:\frac{8x^{3}}{3}+6x^{2}-8x,-3\le\:x\le\:1
|
extreme f(x)=(x^4)/4-(x/3)^3-x^2+1
|
extreme\:f(x)=\frac{x^{4}}{4}-(\frac{x}{3})^{3}-x^{2}+1
|
extreme f(x)=cos(x)-9x,0<= x<= 4pi
|
extreme\:f(x)=\cos(x)-9x,0\le\:x\le\:4π
|
extreme f(x,y)=3x^2-3y^2+8
|
extreme\:f(x,y)=3x^{2}-3y^{2}+8
|
extreme y=xe^{-(x^2)/(18)}
|
extreme\:y=xe^{-\frac{x^{2}}{18}}
|
extreme f(x)=(8-9x)/(\sqrt[3]{x+3)}
|
extreme\:f(x)=\frac{8-9x}{\sqrt[3]{x+3}}
|
extreme f(x,y)=2x^3+2xy^2-4x+5
|
extreme\:f(x,y)=2x^{3}+2xy^{2}-4x+5
|
extreme f(x)=(40)/r+4pir^2
|
extreme\:f(x)=\frac{40}{r}+4πr^{2}
|
extreme f(x)=x*sqrt(x+2)
|
extreme\:f(x)=x\cdot\:\sqrt{x+2}
|
extreme f(x,y)=13-4x+8y
|
extreme\:f(x,y)=13-4x+8y
|
extreme g(x)=x+4/(x^2)
|
extreme\:g(x)=x+\frac{4}{x^{2}}
|
extreme f(1,y)=y^2+y+6
|
extreme\:f(1,y)=y^{2}+y+6
|
extreme f(x)=-10x^2+60x-80
|
extreme\:f(x)=-10x^{2}+60x-80
|
extreme f(x)=-5/(x-2)
|
extreme\:f(x)=-\frac{5}{x-2}
|
extreme f(x)=4x^2-4x+1,-3<= x<= 1
|
extreme\:f(x)=4x^{2}-4x+1,-3\le\:x\le\:1
|
extreme f(x)=(x^2-9)^{1/3}
|
extreme\:f(x)=(x^{2}-9)^{\frac{1}{3}}
|
extreme f(x)=x^4-8x^3+20
|
extreme\:f(x)=x^{4}-8x^{3}+20
|
extreme f(x)=3+x+9/x ,(0,infinity)
|
extreme\:f(x)=3+x+\frac{9}{x},(0,\infty\:)
|
extreme f(x)=x^{2/9}(7x+11)
|
extreme\:f(x)=x^{\frac{2}{9}}(7x+11)
|
extreme 3x+(75)/x
|
extreme\:3x+\frac{75}{x}
|
extreme x^2-y^2-6x+6y+2
|
extreme\:x^{2}-y^{2}-6x+6y+2
|
extreme (2x^2-8)/(-x^2-2x+3)
|
extreme\:\frac{2x^{2}-8}{-x^{2}-2x+3}
|
extreme f(x)=6sqrt(x)-1/(7sqrt(x))
|
extreme\:f(x)=6\sqrt{x}-\frac{1}{7\sqrt{x}}
|
extreme f(x)=x-3ln(x^2+5)
|
extreme\:f(x)=x-3\ln(x^{2}+5)
|
extreme f(x)=-27xy+x^3+y^3
|
extreme\:f(x)=-27xy+x^{3}+y^{3}
|
extreme 2x^3-3x^2-12x+13
|
extreme\:2x^{3}-3x^{2}-12x+13
|