Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=2sqrt(x+5)
inverse\:f(x)=2\sqrt{x+5}
distance (4/5 , 13/5),(8/5 , 11/5)
distance\:(\frac{4}{5},\frac{13}{5}),(\frac{8}{5},\frac{11}{5})
inverse of 2x^4-5
inverse\:2x^{4}-5
domain of f(x)=(sqrt(2+x))/(3-x)
domain\:f(x)=\frac{\sqrt{2+x}}{3-x}
inverse of f(x)=8x-10
inverse\:f(x)=8x-10
asymptotes of f(x)=(x^2-144)/(x+12)
asymptotes\:f(x)=\frac{x^{2}-144}{x+12}
perpendicular y=-x/6-2,(9,-2)
perpendicular\:y=-\frac{x}{6}-2,(9,-2)
periodicity of f(x)=-2-sin(2x)
periodicity\:f(x)=-2-\sin(2x)
extreme f(x)=x^3+3x+1
extreme\:f(x)=x^{3}+3x+1
domain of y=sqrt(7-x)
domain\:y=\sqrt{7-x}
inverse of 2x^3-6
inverse\:2x^{3}-6
range of f(x)=sqrt(4x^2-1)
range\:f(x)=\sqrt{4x^{2}-1}
asymptotes of f(x)=(x^2-6x+9)/(x^2-9)
asymptotes\:f(x)=\frac{x^{2}-6x+9}{x^{2}-9}
inverse of g(x)=3log_{5}(x+1)-2
inverse\:g(x)=3\log_{5}(x+1)-2
midpoint (6,-8),(-4,-2)
midpoint\:(6,-8),(-4,-2)
domain of f(x)=(x^2)/(x-1)
domain\:f(x)=\frac{x^{2}}{x-1}
inverse of 1/(sqrt(x^3))
inverse\:\frac{1}{\sqrt{x^{3}}}
distance (4,2),(-3,2)
distance\:(4,2),(-3,2)
asymptotes of (x-1)/(x^2)
asymptotes\:\frac{x-1}{x^{2}}
domain of ln(x+1)
domain\:\ln(x+1)
y=x^3
y=x^{3}
domain of f(x)=sqrt((4-3n))
domain\:f(x)=\sqrt{(4-3n)}
asymptotes of f(x)=(x^2-x)/(x-2)
asymptotes\:f(x)=\frac{x^{2}-x}{x-2}
extreme f(x)=-27x^3+9x+6
extreme\:f(x)=-27x^{3}+9x+6
inverse of 19+\sqrt[3]{x}
inverse\:19+\sqrt[3]{x}
parity (x-4)/(x^3-5x^2+12x-33)
parity\:\frac{x-4}{x^{3}-5x^{2}+12x-33}
inverse of f(x)=log_{2}(-x-1)+3
inverse\:f(x)=\log_{2}(-x-1)+3
range of f(x)=sqrt(4-x)+1
range\:f(x)=\sqrt{4-x}+1
inverse of f(x)=sqrt(x-2)+3
inverse\:f(x)=\sqrt{x-2}+3
domain of f(x)=x^2+2x-15
domain\:f(x)=x^{2}+2x-15
inverse of sqrt(3-x)
inverse\:\sqrt{3-x}
distance (-5,6),(-3,-1)
distance\:(-5,6),(-3,-1)
critical f(x)=5x^4+8x^3+2x^2
critical\:f(x)=5x^{4}+8x^{3}+2x^{2}
inverse of f(x)=10
inverse\:f(x)=10
line (13,0),(15,1)
line\:(13,0),(15,1)
domain of 9t-2t^2
domain\:9t-2t^{2}
symmetry y(X)=-X^2
symmetry\:y(X)=-X^{2}
intercepts of (-3x+10)/(2x)
intercepts\:\frac{-3x+10}{2x}
domain of f(x)=(7x-5)/(7x)
domain\:f(x)=\frac{7x-5}{7x}
asymptotes of f(x)=3x-1
asymptotes\:f(x)=3x-1
inverse of f(x)=log_{6}(x+2)
inverse\:f(x)=\log_{6}(x+2)
f(x)=(ln(x))/x
f(x)=\frac{\ln(x)}{x}
critical 3t^2-1/(t^2)
critical\:3t^{2}-\frac{1}{t^{2}}
inverse of f(x)=x^{3/2}
inverse\:f(x)=x^{\frac{3}{2}}
inflection f(x)=x^3-2x^2-4x+3
inflection\:f(x)=x^{3}-2x^{2}-4x+3
domain of f(x)= 3/(x-7)
domain\:f(x)=\frac{3}{x-7}
slope ofintercept p=15n+300
slopeintercept\:p=15n+300
domain of sqrt(x-1)+3
domain\:\sqrt{x-1}+3
domain of 2x-3
domain\:2x-3
asymptotes of f(x)=(4x-36x)/(3x-27)
asymptotes\:f(x)=\frac{4x-36x}{3x-27}
range of sqrt(1/(x-5))
range\:\sqrt{\frac{1}{x-5}}
domain of f(x)= 4/(sqrt(x))+7
domain\:f(x)=\frac{4}{\sqrt{x}}+7
domain of (x^2-6x+12)/(x-4)
domain\:\frac{x^{2}-6x+12}{x-4}
periodicity of-cos(-x)+4
periodicity\:-\cos(-x)+4
inverse of y=(x+2)/(x-3)
inverse\:y=\frac{x+2}{x-3}
domain of f(x)=e^{x-1}
domain\:f(x)=e^{x-1}
inverse of f(x)= 5/(x+4)
inverse\:f(x)=\frac{5}{x+4}
domain of f(x)=\sqrt[15]{x-7}
domain\:f(x)=\sqrt[15]{x-7}
asymptotes of y=(x+8)/x
asymptotes\:y=\frac{x+8}{x}
domain of f(x)=(20)/(x+5)
domain\:f(x)=\frac{20}{x+5}
parity y=-arcsin(5x^2+4)
parity\:y=-\arcsin(5x^{2}+4)
asymptotes of f(x)=x^4-4x^3
asymptotes\:f(x)=x^{4}-4x^{3}
asymptotes of f(x)= 2/(x-3)+1
asymptotes\:f(x)=\frac{2}{x-3}+1
domain of f(x)=(sqrt(x+7))/(2-x)
domain\:f(x)=\frac{\sqrt{x+7}}{2-x}
perpendicular y=-1/6 x+3,(1,10)
perpendicular\:y=-\frac{1}{6}x+3,(1,10)
inverse of f(x)=-x-5
inverse\:f(x)=-x-5
intercepts of-x^2+4x-3
intercepts\:-x^{2}+4x-3
extreme f(x)=x^3-x
extreme\:f(x)=x^{3}-x
inverse of 100
inverse\:100
midpoint (-1,5),(2,-3)
midpoint\:(-1,5),(2,-3)
inverse of (5x-15)/2
inverse\:\frac{5x-15}{2}
inverse of \sqrt[3]{7x}
inverse\:\sqrt[3]{7x}
asymptotes of f(x)=(11x)/(x^2-121)
asymptotes\:f(x)=\frac{11x}{x^{2}-121}
domain of (sqrt(4-x^2))(sqrt(x+1))
domain\:(\sqrt{4-x^{2}})(\sqrt{x+1})
domain of f(x)=7x-8
domain\:f(x)=7x-8
monotone f(x)=x^2-4
monotone\:f(x)=x^{2}-4
domain of 12sqrt(p)
domain\:12\sqrt{p}
y=-x+3
y=-x+3
range of-log_{3}(x)+6
range\:-\log_{3}(x)+6
inverse of f(x)=2+ln(x)
inverse\:f(x)=2+\ln(x)
parity \sqrt[x]{(x^x+16^x)/(64^x+x^x)}
parity\:\sqrt[x]{\frac{x^{x}+16^{x}}{64^{x}+x^{x}}}
inverse of sqrt(5+8x)
inverse\:\sqrt{5+8x}
inverse of f(x)=2.1781x+25.2
inverse\:f(x)=2.1781x+25.2
inverse of f(x)=0.577
inverse\:f(x)=0.577
line (1,-3),(5,-1)
line\:(1,-3),(5,-1)
domain of f(x)=sqrt(5)
domain\:f(x)=\sqrt{5}
monotone X^3
monotone\:X^{3}
inverse of y= 9/5 x+35
inverse\:y=\frac{9}{5}x+35
domain of f(t)=sqrt(t+6)
domain\:f(t)=\sqrt{t+6}
domain of f(x)=(x^2+14)/(x^2-4x-5)
domain\:f(x)=\frac{x^{2}+14}{x^{2}-4x-5}
range of (x^2+x-6)/(x^2+6x+9)
range\:\frac{x^{2}+x-6}{x^{2}+6x+9}
inverse of f(x)=4(x+3)^2-16
inverse\:f(x)=4(x+3)^{2}-16
range of 2x-3
range\:2x-3
domain of x^2+12
domain\:x^{2}+12
extreme f(x)=x^2+4x+5
extreme\:f(x)=x^{2}+4x+5
inverse of f(x)=x^9
inverse\:f(x)=x^{9}
inverse of f(x)=7x^2
inverse\:f(x)=7x^{2}
inverse of y=sqrt(4-x^2)
inverse\:y=\sqrt{4-x^{2}}
extreme f(x)=5+3x^2
extreme\:f(x)=5+3x^{2}
distance (10,-3),(2,-4)
distance\:(10,-3),(2,-4)
1
..
228
229
230
231
232
..
1324