Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
taylor 1/(1-x),i
taylor\:\frac{1}{1-x},i
area y=x^3,y=x^2-4x,[-1,1]
area\:y=x^{3},y=x^{2}-4x,[-1,1]
integral from 1 to 4 of (7x+sqrt(x))
\int\:_{1}^{4}(7x+\sqrt{x})dx
integral of (3x^2-4x+2)
\int\:(3x^{2}-4x+2)dx
integral of 2/(sqrt(t))
\int\:\frac{2}{\sqrt{t}}dt
sum from n=0 to infinity of-n
\sum\:_{n=0}^{\infty\:}-n
y^'=3sin(x)(2-y)
y^{\prime\:}=3\sin(x)(2-y)
derivative of (-14/(sqrt(x)))
\frac{d}{dx}(\frac{-14}{\sqrt{x}})
derivative of x-1
derivative\:x-1
limit as x approaches infinity of 1+5/x
\lim\:_{x\to\:\infty\:}(1+\frac{5}{x})
integral of 3/(4-x)
\int\:\frac{3}{4-x}dx
y^'-3y=te^{2t}
y^{\prime\:}-3y=te^{2t}
integral from 0 to pi/2 of 19sin^2(2x)
\int\:_{0}^{\frac{π}{2}}19\sin^{2}(2x)dx
derivative of 5sin(1/5 x)
derivative\:5\sin(\frac{1}{5}x)
limit as x approaches 4 of (x-4)/(x+4)
\lim\:_{x\to\:4}(\frac{x-4}{x+4})
derivative of-1/((2-x^2))
\frac{d}{dx}(-\frac{1}{(2-x)^{2}})
(\partial)/(\partial x)(3x^2+y^3)
\frac{\partial\:}{\partial\:x}(3x^{2}+y^{3})
derivative of y=x^{2/5}
derivative\:y=x^{\frac{2}{5}}
derivative of ({f}(x,h(x+h)-{f}(x))/h)
\frac{d}{dx}(\frac{{f}(x,h)(x+h)-{f}(x)}{h})
d/(dn)(i^n)
\frac{d}{dn}(i^{n})
limit as x approaches 1 of (x^3)/3
\lim\:_{x\to\:1}(\frac{x^{3}}{3})
derivative of f(x)=(sqrt(x))/(5+x)
derivative\:f(x)=\frac{\sqrt{x}}{5+x}
tangent of f(x)=(sqrt(x))/(x+1),\at x=4
tangent\:f(x)=\frac{\sqrt{x}}{x+1},\at\:x=4
laplacetransform 2s
laplacetransform\:2s
2xdy+(x^2y^4+1)ydx=0
2xdy+(x^{2}y^{4}+1)ydx=0
integral of 2cos(nx)
\int\:2\cos(nx)dx
derivative of ((x^2+4)/(x^2-4))^2
derivative\:(\frac{x^{2}+4}{x^{2}-4})^{2}
limit as x approaches 5-of 6/(x-5)
\lim\:_{x\to\:5-}(\frac{6}{x-5})
integral of ln(x+7)
\int\:\ln(x+7)dx
integral of 3(ln(x))^2
\int\:3(\ln(x))^{2}dx
integral of x(x-3)
\int\:x(x-3)dx
derivative of (cos(x^3)^2)
\frac{d}{dx}((\cos(x^{3}))^{2})
2xy+x^3=(xdy)/(dx)
2xy+x^{3}=\frac{xdy}{dx}
integral of (sin(3t+10))/(cos^2(3t+10))
\int\:\frac{\sin(3t+10)}{\cos^{2}(3t+10)}dt
derivative of 2sqrt(x)ln(x)
\frac{d}{dx}(2\sqrt{x}\ln(x))
tangent of (x-y-1)^3=x,(1,-1)
tangent\:(x-y-1)^{3}=x,(1,-1)
y^{''}+y^'=3sin(4x)
y^{\prime\:\prime\:}+y^{\prime\:}=3\sin(4x)
limit as n approaches infinity of (n!)^n
\lim\:_{n\to\:\infty\:}((n!)^{n})
integral of ((2x+7)/(x^2+2x+5))
\int\:(\frac{2x+7}{x^{2}+2x+5})dx
tangent of (3x)/((x+1)^2)(0)
tangent\:\frac{3x}{(x+1)^{2}}(0)
6x+y^{''}=0
6x+y^{\prime\:\prime\:}=0
derivative of (x^4-sec(4x^2-2))^{-4}
derivative\:(x^{4}-\sec(4x^{2}-2))^{-4}
(\partial)/(\partial x)(y/(x^2))
\frac{\partial\:}{\partial\:x}(\frac{y}{x^{2}})
integral from 0 to 10 of te^{-0.6t}
\int\:_{0}^{10}te^{-0.6t}dt
x^'=rx-12
x^{\prime\:}=rx-12
6y^{''}+9y^'-y=23
6y^{\prime\:\prime\:}+9y^{\prime\:}-y=23
derivative of sqrt(ycos(x))
\frac{d}{dx}(\sqrt{y\cos(x)})
inverse oflaplace 1/(1-s)
inverselaplace\:\frac{1}{1-s}
derivative of y=(cos(x))/(sin(x))
derivative\:y=\frac{\cos(x)}{\sin(x)}
limit as x approaches 5 of (x-6)/(x-5)
\lim\:_{x\to\:5}(\frac{x-6}{x-5})
integral of cos(6x)-cos(-6x)
\int\:\cos(6x)-\cos(-6x)dx
integral of (cos(θ)-cos(2θ))/(1-cos(θ))
\int\:\frac{\cos(θ)-\cos(2θ)}{1-\cos(θ)}dθ
derivative of x(ln(x))
derivative\:x(\ln(x))
(\partial)/(\partial x)(x+y-8)
\frac{\partial\:}{\partial\:x}(x+y-8)
derivative of f(x)=(x^2+5)(8-x)
derivative\:f(x)=(x^{2}+5)(8-x)
limit as x approaches 1 of sqrt(4x^2+2)
\lim\:_{x\to\:1}(\sqrt{4x^{2}+2})
derivative of 4/(sqrt(x))-1
derivative\:\frac{4}{\sqrt{x}}-1
integral of xe^{(-x^2)/2}
\int\:xe^{\frac{-x^{2}}{2}}dx
integral from-2 to 6 of sqrt(12+4x-x^2)
\int\:_{-2}^{6}\sqrt{12+4x-x^{2}}dx
integral of t^5cos(2t^6)
\int\:t^{5}\cos(2t^{6})dt
y^{''}-3y^'+2y=e^x
y^{\prime\:\prime\:}-3y^{\prime\:}+2y=e^{x}
derivative of 1+sin(2x)
\frac{d}{dx}(1+\sin(2x))
integral of 7sin^2(x)
\int\:7\sin^{2}(x)dx
derivative of x^{15x}
\frac{d}{dx}(x^{15x})
integral of (6x)/((x-5)^2)
\int\:\frac{6x}{(x-5)^{2}}dx
limit as x approaches 2 of sqrt(6x^2+1)
\lim\:_{x\to\:2}(\sqrt{6x^{2}+1})
integral from-infinity to 0 of e^{9x}
\int\:_{-\infty\:}^{0}e^{9x}dx
t^2((dy)/(dt))+4ty-y^3=0
t^{2}(\frac{dy}{dt})+4ty-y^{3}=0
slope of x^3+y^3-6xy=0,(4/3 , 8/3)
slope\:x^{3}+y^{3}-6xy=0,(\frac{4}{3},\frac{8}{3})
integral from 2 to 5 of 4x^3
\int\:_{2}^{5}4x^{3}dx
derivative of f(x)=(1-x^2)/((1+x^2)^2)
derivative\:f(x)=\frac{1-x^{2}}{(1+x^{2})^{2}}
limit as x approaches c of \sqrt[3]{27}
\lim\:_{x\to\:c}(\sqrt[3]{27})
integral from-infinity to-1 of e^{-16t}
\int\:_{-\infty\:}^{-1}e^{-16t}dt
integral of x^{-1/2}ln(x)
\int\:x^{-\frac{1}{2}}\ln(x)dx
integral from-pi/3 to 0 of 6sec^3(x)
\int\:_{-\frac{π}{3}}^{0}6\sec^{3}(x)dx
integral of x^2ye^{xy}
\int\:x^{2}ye^{xy}dx
(y-x3)dx+(x+y3)dy=0
(y-x3)dx+(x+y3)dy=0
f^'(x)=xe^{x^2}
f^{\prime\:}(x)=xe^{x^{2}}
(\partial)/(\partial x)(x+6y)
\frac{\partial\:}{\partial\:x}(x+6y)
integral of 4e^7
\int\:4e^{7}dx
integral of 6x^4e^{-x}
\int\:6x^{4}e^{-x}dx
tangent of f(x)=x^3+x^2+6/x ,\at x=1
tangent\:f(x)=x^{3}+x^{2}+\frac{6}{x},\at\:x=1
slope of (-4,6),(10,-1)
slope\:(-4,6),(10,-1)
y^'=((x^2e^{y/x}+y^2))/(xy)
y^{\prime\:}=\frac{(x^{2}e^{\frac{y}{x}}+y^{2})}{xy}
(\partial)/(\partial x)(2xy+sin(x))
\frac{\partial\:}{\partial\:x}(2xy+\sin(x))
inverse oflaplace ((e^{-s}))/(s(s+1))
inverselaplace\:\frac{(e^{-s})}{s(s+1)}
derivative of 128sin(2x)
\frac{d}{dx}(128\sin(2x))
y=(x^2+4)^2
y=(x^{2}+4)^{2}
area x^2,0,-1,2
area\:x^{2},0,-1,2
derivative of sin(pix^2)
\frac{d}{dx}(\sin(πx^{2}))
limit as x approaches 0+of 1/(xln(x^9))
\lim\:_{x\to\:0+}(\frac{1}{x\ln(x^{9})})
y^'=-y/(x^2)+1/(x^2y^2)
y^{\prime\:}=-\frac{y}{x^{2}}+\frac{1}{x^{2}y^{2}}
limit as x approaches 6+of 1/((x-6)^2)
\lim\:_{x\to\:6+}(\frac{1}{(x-6)^{2}})
derivative of (3^{x^2}+x/(2^{x^2)})
\frac{d}{dx}(\frac{3^{x^{2}}+x}{2^{x^{2}}})
integral of (2(csc(x))^2)/(cot(x))
\int\:\frac{2(\csc(x))^{2}}{\cot(x)}dx
integral from 0 to 3 of 3e^x
\int\:_{0}^{3}3e^{x}dx
integral of 6/((9x^2+1)^2)
\int\:\frac{6}{(9x^{2}+1)^{2}}dx
derivative of y=(arctan(2x))/x
derivative\:y=\frac{\arctan(2x)}{x}
limit as x approaches 0 of (x+1)^{ln(x)}
\lim\:_{x\to\:0}((x+1)^{\ln(x)})
derivative of f(x)=9+5x^2-2x^3
derivative\:f(x)=9+5x^{2}-2x^{3}
1
..
1008
1009
1010
1011
1012
..
2459