Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
maclaurin ((2+x))/(1-x)
maclaurin\:\frac{(2+x)}{1-x}
integral of (x^2)/((x-4)(x-5)^2)
\int\:\frac{x^{2}}{(x-4)(x-5)^{2}}dx
derivative of ln(1-sin(x))
\frac{d}{dx}(\ln(1-\sin(x)))
derivative of (2x^{-2}+3^{-3})
\frac{d}{dx}((2x^{-2}+3)^{-3})
y^{''}+9y=cos(5t)
y^{\prime\:\prime\:}+9y=\cos(5t)
tangent of y=2x^2+3x,(-2,2)
tangent\:y=2x^{2}+3x,(-2,2)
integral of ((sin(3x)-cos(2x)))/4
\int\:\frac{(\sin(3x)-\cos(2x))}{4}dx
limit as x approaches-3 of (x^2-4)/(x-2)
\lim\:_{x\to\:-3}(\frac{x^{2}-4}{x-2})
derivative of x*2^x
derivative\:x\cdot\:2^{x}
tangent of e^{-8x}
tangent\:e^{-8x}
y^'=-(4x)/y ,y(2)=3
y^{\prime\:}=-\frac{4x}{y},y(2)=3
limit as x approaches-4 of-2
\lim\:_{x\to\:-4}(-2)
integral of 6x^5e^{x^6}
\int\:6x^{5}e^{x^{6}}dx
derivative of sqrt(x^3+8x)
\frac{d}{dx}(\sqrt{x^{3}+8x})
derivative of f(x)=e^{2y}(1-y)
derivative\:f(x)=e^{2y}(1-y)
derivative of (10^x+10^{-x}^2)
\frac{d}{dx}((10^{x}+10^{-x})^{2})
limit as x approaches 2 of (4x)/(x-2)
\lim\:_{x\to\:2}(\frac{4x}{x-2})
tangent of x^2-8x+9
tangent\:x^{2}-8x+9
area x^2-2x+2,(0,1)
area\:x^{2}-2x+2,(0,1)
integral of (2y+3)^2
\int\:(2y+3)^{2}dy
d/(dt)(e^{-3t})
\frac{d}{dt}(e^{-3t})
limit as x approaches infinity of 3x+1/2
\lim\:_{x\to\:\infty\:}(3x+\frac{1}{2})
integral of 2/(x^2-2x)
\int\:\frac{2}{x^{2}-2x}dx
derivative of x/(log_{10(x)})
\frac{d}{dx}(\frac{x}{\log_{10}(x)})
derivative of y= 1/(log_{4)(x)}
derivative\:y=\frac{1}{\log_{4}(x)}
integral from 0 to 4 of 2/(x^2)
\int\:_{0}^{4}\frac{2}{x^{2}}dx
integral from-1 to 1 of 2x^2
\int\:_{-1}^{1}2x^{2}dx
derivative of (-20/((2+x)^2))
\frac{d}{dx}(\frac{-20}{(2+x)^{2}})
area x^2-11,10x
area\:x^{2}-11,10x
limit as (x,y) approaches (0,0) of (e^{xy}-1)/(xy)
\lim\:_{(x,y)\to\:(0,0)}(\frac{e^{xy}-1}{xy})
(\partial)/(\partial x)(x^4+3y^3)
\frac{\partial\:}{\partial\:x}(x^{4}+3y^{3})
limit as x approaches 1 of x^3-3x+2
\lim\:_{x\to\:1}(x^{3}-3x+2)
integral of 1/(x+x^2)
\int\:\frac{1}{x+x^{2}}dx
y^{''}+1/2 y=0
y^{\prime\:\prime\:}+\frac{1}{2}y=0
derivative of f(x)=(5sqrt(x)+9)x^2
derivative\:f(x)=(5\sqrt{x}+9)x^{2}
tangent of 3/(sqrt(x)),\at x= 1/16
tangent\:\frac{3}{\sqrt{x}},\at\:x=\frac{1}{16}
(dy)/(dt)=ycos(3t+2)
\frac{dy}{dt}=y\cos(3t+2)
area x,0,0.5
area\:x,0,0.5
integral of e^bsin(t-b)
\int\:e^{b}\sin(t-b)db
integral from x to sqrt(x of)1
\int\:_{x}^{\sqrt{x}}1dt
integral from 0 to 1 of (62)/(4y-1)
\int\:_{0}^{1}\frac{62}{4y-1}dy
derivative of x/(1+ln(x))
\frac{d}{dx}(\frac{x}{1+\ln(x)})
derivative of y=(3x)/(sin(x))
derivative\:y=\frac{3x}{\sin(x)}
limit as x approaches-1 of sqrt(6-3x)
\lim\:_{x\to\:-1}(\sqrt{6-3x})
(\partial)/(\partial x)(y)
\frac{\partial\:}{\partial\:x}(y)
integral from 0 to 2 of [(-x^2+4x)-x^2]
\int\:_{0}^{2}[(-x^{2}+4x)-x^{2}]dx
derivative of 1-9/(x^2)
\frac{d}{dx}(1-\frac{9}{x^{2}})
limit as x approaches-2 of (x+4)/(x+2)
\lim\:_{x\to\:-2}(\frac{x+4}{x+2})
derivative of (-16x^2+1^2)
\frac{d}{dx}((-16x^{2}+1)^{2})
integral from 2 to 5 of 5/(x^2-1)
\int\:_{2}^{5}\frac{5}{x^{2}-1}dx
limit as x approaches 5-of (x^5)/((x-5))
\lim\:_{x\to\:5-}(\frac{x^{5}}{(x-5)})
derivative of (2x^2+8x+2)/(sqrt(x))
derivative\:\frac{2x^{2}+8x+2}{\sqrt{x}}
integral of (cos(x)-tan(x))/(cos^2(x))
\int\:\frac{\cos(x)-\tan(x)}{\cos^{2}(x)}dx
derivative of sqrt(4x)
derivative\:\sqrt{4x}
derivative of sin(x+4x^2)
\frac{d}{dx}(\sin(x)+4x^{2})
sum from n=2 to infinity of 1/(2ie^nn^2)
\sum\:_{n=2}^{\infty\:}\frac{1}{2ie^{n}n^{2}}
integral of 1/(e^{a*x)}
\int\:\frac{1}{e^{a\cdot\:x}}dx
derivative of f(x)=\sqrt[3]{x^2}+sqrt(x)
derivative\:f(x)=\sqrt[3]{x^{2}}+\sqrt{x}
integral of (csc(x)+tan(x))^2
\int\:(\csc(x)+\tan(x))^{2}dx
xy^'=y+2x^2y
xy^{\prime\:}=y+2x^{2}y
derivative of (1+5x^2(x-x^2))
\frac{d}{dx}((1+5x^{2})(x-x^{2}))
limit as x approaches 0 of 2/(x^2(x+7))
\lim\:_{x\to\:0}(\frac{2}{x^{2}(x+7)})
derivative of e^x*sin(2x)
\frac{d}{dx}(e^{x}\cdot\:\sin(2x))
derivative of sqrt(8x-x^2)
\frac{d}{dx}(\sqrt{8x-x^{2}})
integral of 6cos(6x)-5
\int\:6\cos(6x)-5dx
(\partial)/(\partial x)(x-1)
\frac{\partial\:}{\partial\:x}(x-1)
maclaurin 7/(1+x)
maclaurin\:\frac{7}{1+x}
(\partial)/(\partial x)(3x^2y-1)
\frac{\partial\:}{\partial\:x}(3x^{2}y-1)
integral of (6x+2)/(x^2+9)
\int\:\frac{6x+2}{x^{2}+9}dx
derivative of (x+3/(x+2))
\frac{d}{dx}(\frac{x+3}{x+2})
derivative of 4/(4-10x)
\frac{d}{dx}(\frac{4}{4-10x})
derivative of (x^2-2/x)
\frac{d}{dx}(\frac{x^{2}-2}{x})
tangent of x^2+2xy-y^2+x=5,(3,7)
tangent\:x^{2}+2xy-y^{2}+x=5,(3,7)
d/(dt)(tln(t))
\frac{d}{dt}(t\ln(t))
limit as x approaches 0+of x/(ln(x))
\lim\:_{x\to\:0+}(\frac{x}{\ln(x)})
area f(x)=x^2+4x-5,-3,3
area\:f(x)=x^{2}+4x-5,-3,3
limit as x approaches 3 of (5x)/(x-3)
\lim\:_{x\to\:3}(\frac{5x}{x-3})
derivative of ln((3x/(2x+1)))
\frac{d}{dx}(\ln(\frac{3x}{2x+1}))
integral of 1/((x+2)(x+7)(2x-5)(x+1)^2)
\int\:\frac{1}{(x+2)(x+7)(2x-5)(x+1)^{2}}dx
area y=xe^{-0.4x},x=5,y=0
area\:y=xe^{-0.4x},x=5,y=0
derivative of 2+sin(x)
\frac{d}{dx}(2+\sin(x))
limit as x approaches 5+of (x-5)/(x-5)
\lim\:_{x\to\:5+}(\frac{x-5}{x-5})
limit as x approaches 0 of sqrt(x)ln(x)
\lim\:_{x\to\:0}(\sqrt{x}\ln(x))
xy^'-y=2x^2-x-2
xy^{\prime\:}-y=2x^{2}-x-2
integral of (cos(x)+1)^2-(sin(x)+1)^2
\int\:(\cos(x)+1)^{2}-(\sin(x)+1)^{2}dx
-2((dy)/(dx))+6x^2=0
-2(\frac{dy}{dx})+6x^{2}=0
y^{''}+25y=-40sec(5t)
y^{\prime\:\prime\:}+25y=-40\sec(5t)
integral of 1/(a^2-x^2)
\int\:\frac{1}{a^{2}-x^{2}}dx
limit as x approaches 2 of (x^2)^2
\lim\:_{x\to\:2}((x^{2})^{2})
area y=x,y=3x,y=-x+2
area\:y=x,y=3x,y=-x+2
sum from n=0 to infinity of n*(3/4)^n
\sum\:_{n=0}^{\infty\:}n\cdot\:(\frac{3}{4})^{n}
integral of ((x+1))/(x^3+x^2+6x)
\int\:\frac{(x+1)}{x^{3}+x^{2}+6x}dx
x^'=4x-x^3
x^{\prime\:}=4x-x^{3}
derivative of (sqrt(x)-5/(sqrt(x)+6))
\frac{d}{dx}(\frac{\sqrt{x}-5}{\sqrt{x}+6})
derivative of bx
\frac{d}{dx}(bx)
y^'=t+3
y^{\prime\:}=t+3
(\partial)/(\partial x)(((3x+5))/(6y+1))
\frac{\partial\:}{\partial\:x}(\frac{(3x+5)}{6y+1})
integral from 0 to 2 of pi(4x^2-x^4)
\int\:_{0}^{2}π(4x^{2}-x^{4})dx
tangent of y=cos(x),\at x= pi/4
tangent\:y=\cos(x),\at\:x=\frac{π}{4}
y^{''}+y^'-y=0
y^{\prime\:\prime\:}+y^{\prime\:}-y=0
1
..
1055
1056
1057
1058
1059
..
2459