Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
y^{''}-3y^'=8x
y^{\prime\:\prime\:}-3y^{\prime\:}=8x
limit as x approaches 4+of x/(x-4)
\lim\:_{x\to\:4+}(\frac{x}{x-4})
inverse oflaplace 1/(3s+2)
inverselaplace\:\frac{1}{3s+2}
(d^2)/(dx^2)((x^2)/(1+x))
\frac{d^{2}}{dx^{2}}(\frac{x^{2}}{1+x})
derivative of (5x)/(x+2)
derivative\:\frac{5x}{x+2}
derivative of 7x^3
derivative\:7x^{3}
(\partial)/(\partial x)(cos(x)+sin(y))
\frac{\partial\:}{\partial\:x}(\cos(x)+\sin(y))
integral of x^6ln(2x)
\int\:x^{6}\ln(2x)dx
(dy)/(dt)=3y+y^6
\frac{dy}{dt}=3y+y^{6}
derivative of f(x)=(2-xe^x)/(x+e^x)
derivative\:f(x)=\frac{2-xe^{x}}{x+e^{x}}
taylor e^x*cos(x)
taylor\:e^{x}\cdot\:\cos(x)
integral from-1 to 1 of (1/(1+x^2))^2
\int\:_{-1}^{1}(\frac{1}{1+x^{2}})^{2}dx
integral of (3x^3-4x^2+3x)/(x^2+1)
\int\:\frac{3x^{3}-4x^{2}+3x}{x^{2}+1}dx
integral of 6x^5-7x^4-9x^2
\int\:6x^{5}-7x^{4}-9x^{2}dx
integral of x+c
\int\:x+cdx
integral from 0 to 1 of integral from 0 to x of (6/7 (x^2+x*y/2))
\int\:_{0}^{1}\int\:_{0}^{x}(\frac{6}{7}(x^{2}+x\cdot\:\frac{y}{2}))dydx
derivative of y= t/((t-7)^2)
derivative\:y=\frac{t}{(t-7)^{2}}
limit as x approaches infinity of ln(9x)-ln(x+7)
\lim\:_{x\to\:\infty\:}(\ln(9x)-\ln(x+7))
integral of 1/(ln(x)x)
\int\:\frac{1}{\ln(x)x}dx
integral of (ln(x))/(2x)
\int\:\frac{\ln(x)}{2x}dx
derivative of f(x)=(1n(x^3))
derivative\:f(x)=(1n(x^{3}))
limit as x approaches 19 of (x-19)/(x^2-361)
\lim\:_{x\to\:19}(\frac{x-19}{x^{2}-361})
integral of e^xsqrt(31+e^x)
\int\:e^{x}\sqrt{31+e^{x}}dx
(dy)/(dx)=e^{2x}-3y,y(0)=2
\frac{dy}{dx}=e^{2x}-3y,y(0)=2
(\partial)/(\partial x)(x^5+y^3)
\frac{\partial\:}{\partial\:x}(x^{5}+y^{3})
y^{''}+2y^'+y=16e^{-t}
y^{\prime\:\prime\:}+2y^{\prime\:}+y=16e^{-t}
derivative of sqrt(2x+1)
derivative\:\sqrt{2x+1}
integral from-2 to 3 of (37)/(x^4)
\int\:_{-2}^{3}\frac{37}{x^{4}}dx
limit as x approaches 0 of (20sin(3x))/x
\lim\:_{x\to\:0}(\frac{20\sin(3x)}{x})
integral of 1/((x-2)^{1/3)}
\int\:\frac{1}{(x-2)^{\frac{1}{3}}}dx
limit as h approaches 0 of ((sqrt(5(x+h)+4))-sqrt(5x+4))/h
\lim\:_{h\to\:0}(\frac{(\sqrt{5(x+h)+4})-\sqrt{5x+4}}{h})
area 4x+3,[0,1]
area\:4x+3,[0,1]
integral of (3x^3-2x^2+6x)/x
\int\:\frac{3x^{3}-2x^{2}+6x}{x}dx
integral of e^xcos(y)-x-2
\int\:e^{x}\cos(y)-x-2
(sech(2x))^{sin(3x)}
(\sech(2x))^{\sin(3x)}
integral of csc(x)
\int\:\csc(x)dx
derivative of 1+cos^2(x)
derivative\:1+\cos^{2}(x)
(dx)/(dy)2-(dy)/(dx)sec(x)=0
\frac{dx}{dy}2-\frac{dy}{dx}\sec(x)=0
derivative of f(x)= 2/(5x+3)
derivative\:f(x)=\frac{2}{5x+3}
sum from n=1 to infinity}((-1)^{n-1 of)/(4n+1)
\sum\:_{n=1}^{\infty\:}\frac{(-1)^{n-1}}{4n+1}
derivative of (3x-2^2(2x+1)^4)
\frac{d}{dx}((3x-2)^{2}(2x+1)^{4})
(\partial)/(\partial x)(4x^2+4y^2)
\frac{\partial\:}{\partial\:x}(4x^{2}+4y^{2})
(\partial)/(\partial y)(1000+11x+6y+xy-(x-3)^2-(y-4)^2)
\frac{\partial\:}{\partial\:y}(1000+11x+6y+xy-(x-3)^{2}-(y-4)^{2})
integral from 0 to 3 of 4/(x^2)
\int\:_{0}^{3}\frac{4}{x^{2}}dx
integral of sqrt(5x+2)
\int\:\sqrt{5x+2}dx
d/(dt)(25-25e^{-t}cos(t)-25e^{-t}sin(t))
\frac{d}{dt}(25-25e^{-t}\cos(t)-25e^{-t}\sin(t))
(\partial)/(\partial v)(e^{{u}(v)+v})
\frac{\partial\:}{\partial\:v}(e^{{u}(v)+v})
integral from 2 to 9 of (x^3-pix^2)
\int\:_{2}^{9}(x^{3}-πx^{2})dx
tangent of f(x)=8(e^x+e^xx),\at x=0
tangent\:f(x)=8(e^{x}+e^{x}x),\at\:x=0
x^2y^'+3xy=(sin(2x))/x
x^{2}y^{\prime\:}+3xy=\frac{\sin(2x)}{x}
integral of (sqrt(x^2+25))/(9x^2)
\int\:\frac{\sqrt{x^{2}+25}}{9x^{2}}dx
limit as x approaches 1+of (x+5)/(x+2)
\lim\:_{x\to\:1+}(\frac{x+5}{x+2})
(\partial)/(\partial x)(ln(4y))
\frac{\partial\:}{\partial\:x}(\ln(4y))
y^{''}-5y^'+4y=-sin(5t)
y^{\prime\:\prime\:}-5y^{\prime\:}+4y=-\sin(5t)
y^'= x/((1+2y))
y^{\prime\:}=\frac{x}{(1+2y)}
area sqrt(x),x-2,[0,4]
area\:\sqrt{x},x-2,[0,4]
(d^3)/(dx^3)(3t^3-2/(t^2))
\frac{d^{3}}{dx^{3}}(3t^{3}-\frac{2}{t^{2}})
integral of (x^3+x+1/(x^3))
\int\:(x^{3}+x+\frac{1}{x^{3}})dx
integral from 0 to pi/2 of-10sin^2(3x)
\int\:_{0}^{\frac{π}{2}}-10\sin^{2}(3x)dx
integral of x/((sqrt(1+2x)))
\int\:\frac{x}{(\sqrt{1+2x})}dx
derivative of tan(6x^2)
\frac{d}{dx}(\tan(6x^{2}))
(\partial)/(\partial x)(cos^2(x-y))
\frac{\partial\:}{\partial\:x}(\cos^{2}(x-y))
derivative of (x^2/(x-2))
\frac{d}{dx}(\frac{x^{2}}{x-2})
integral from 4 to 6 of 2x
\int\:_{4}^{6}2xdx
d/(dt)(\sqrt[5]{t})
\frac{d}{dt}(\sqrt[5]{t})
area x^3-4x^2+4x,[0,3]
area\:x^{3}-4x^{2}+4x,[0,3]
derivative of (1/x ^2)
\frac{d}{dx}((\frac{1}{x})^{2})
derivative of-2x^2+4x-4
\frac{d}{dx}(-2x^{2}+4x-4)
integral of 1/(sqrt(16-x))
\int\:\frac{1}{\sqrt{16-x}}dx
integral from-infinity to 0 of 1/(2-6x)
\int\:_{-\infty\:}^{0}\frac{1}{2-6x}dx
(\partial)/(\partial y)(3.5xycos(xyz))
\frac{\partial\:}{\partial\:y}(3.5xy\cos(xyz))
integral of 1/(9x^2-1)
\int\:\frac{1}{9x^{2}-1}dx
integral of 12x^2+2x-6
\int\:12x^{2}+2x-6dx
integral of 9arctan(x)
\int\:9\arctan(x)dx
(\partial)/(\partial y)(7y-5x)
\frac{\partial\:}{\partial\:y}(7y-5x)
limit as x approaches infinity of log_{10}(2x)
\lim\:_{x\to\:\infty\:}(\log_{10}(2x))
limit as x approaches-1 of (x^2-x)/(x+1)
\lim\:_{x\to\:-1}(\frac{x^{2}-x}{x+1})
derivative of 9sec(x)
\frac{d}{dx}(9\sec(x))
(\partial)/(\partial y)(ln(e^x+xy^3))
\frac{\partial\:}{\partial\:y}(\ln(e^{x}+xy^{3}))
derivative of x^4
\frac{d}{dx}(x^{4})
f(t)=(1.05)/(1+100e^{-0.285t)}
f(t)=\frac{1.05}{1+100e^{-0.285t}}
derivative of e^{1/x ln(x})
\frac{d}{dx}(e^{\frac{1}{x}\ln(x)})
slope of (3,-8),(12,-15)
slope\:(3,-8),(12,-15)
(dy)/(dx)=-x/(4y)
\frac{dy}{dx}=-\frac{x}{4y}
derivative of x^2*y
\frac{d}{dx}(x^{2}\cdot\:y)
integral from 0 to 1 of 4/(sqrt(x)(x+1))
\int\:_{0}^{1}\frac{4}{\sqrt{x}(x+1)}dx
area y=4(x+1),y=5(x+1),x=2
area\:y=4(x+1),y=5(x+1),x=2
derivative of 3x^2y^2
\frac{d}{dx}(3x^{2}y^{2})
derivative of x(1-x^2^{1/2})
\frac{d}{dx}(x(1-x^{2})^{\frac{1}{2}})
sum from n=0 to infinity of i(-1)^n
\sum\:_{n=0}^{\infty\:}i(-1)^{n}
(x+sqrt(x))(dy)/(dx)=y+sqrt(y)
(x+\sqrt{x})\frac{dy}{dx}=y+\sqrt{y}
derivative of 4arccos(sqrt(1-x^2))
\frac{d}{dx}(4\arccos(\sqrt{1-x^{2}}))
(\partial)/(\partial y)(-2y^2)
\frac{\partial\:}{\partial\:y}(-2y^{2})
integral of x\sqrt[5]{x-1}
\int\:x\sqrt[5]{x-1}dx
integral from-2 to 3 of (39)/(x^4)
\int\:_{-2}^{3}\frac{39}{x^{4}}dx
f(θ)=cos(θ^2)
f(θ)=\cos(θ^{2})
(\partial)/(\partial x)(ln(y^2))
\frac{\partial\:}{\partial\:x}(\ln(y^{2}))
y^{''}+by(x)=0
y^{\prime\:\prime\:}+by(x)=0
tangent of g(x)=x^2+3x
tangent\:g(x)=x^{2}+3x
derivative of sqrt(1+1/(x^4))
\frac{d}{dx}(\sqrt{1+\frac{1}{x^{4}}})
1
..
206
207
208
209
210
..
2459