Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 8 to R of 1/(x^2-9x+18)
\int\:_{8}^{R}\frac{1}{x^{2}-9x+18}dx
tangent of f(x)= 6/(3x+1),(-1,-3)
tangent\:f(x)=\frac{6}{3x+1},(-1,-3)
integral of 1/2 ln((1+x)/(1-x))
\int\:\frac{1}{2}\ln(\frac{1+x}{1-x})dx
integral of (6x+7)/((9x^2+21x)^4)
\int\:\frac{6x+7}{(9x^{2}+21x)^{4}}dx
sum from n=1 to infinity of (10^n)/(9^n)
\sum\:_{n=1}^{\infty\:}\frac{10^{n}}{9^{n}}
x(dy)/(dx)-y=x^2e^x
x\frac{dy}{dx}-y=x^{2}e^{x}
(\partial)/(\partial x)(ln(sqrt(3x)+5y))
\frac{\partial\:}{\partial\:x}(\ln(\sqrt{3x}+5y))
limit as x approaches pi of (2x-2pi)cot(x)
\lim\:_{x\to\:π}((2x-2π)\cot(x))
derivative of cos(x^2-1)
\frac{d}{dx}(\cos(x^{2}-1))
(\partial)/(\partial x)((6x)/(x^2+y^2))
\frac{\partial\:}{\partial\:x}(\frac{6x}{x^{2}+y^{2}})
y^'=2x+y,y(0)=7
y^{\prime\:}=2x+y,y(0)=7
taylor sin(x)(cos(x)-1)pi
taylor\:\sin(x)(\cos(x)-1)π
(\partial)/(\partial x)(sqrt(x^2+4y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{x^{2}+4y^{2}})
x^2y^{''}-xy^'+y= 1/x
x^{2}y^{\prime\:\prime\:}-xy^{\prime\:}+y=\frac{1}{x}
integral from 0 to 0.5 of 500x
\int\:_{0}^{0.5}500xdx
tangent of f(x)=6x^2+2x-7
tangent\:f(x)=6x^{2}+2x-7
integral from 0 to 16 of xe^{-x}
\int\:_{0}^{16}xe^{-x}dx
limit as x approaches 0-of (11)/(tan(x))
\lim\:_{x\to\:0-}(\frac{11}{\tan(x)})
integral of 8xln(x)
\int\:8x\ln(x)dx
integral of ((2x-4))/((x-2)^2)
\int\:\frac{(2x-4)}{(x-2)^{2}}dx
(dy)/(dx)=e^{-2x}
\frac{dy}{dx}=e^{-2x}
(dy)/(dx)=3y-x^2y
\frac{dy}{dx}=3y-x^{2}y
derivative of tan(1)
\frac{d}{dx}(\tan(1))
limit as x approaches 1 of 4/(x^3-1)
\lim\:_{x\to\:1}(\frac{4}{x^{3}-1})
derivative of ln((6-x)/(6+x))
derivative\:\ln(\frac{6-x}{6+x})
integral of 2-y^2
\int\:2-y^{2}dy
derivative of 1/8 (x^2-8ln(x))
\frac{d}{dx}(\frac{1}{8}(x^{2}-8\ln(x)))
integral of (e^x)/((e^x-3)(e^{2x)+1)}
\int\:\frac{e^{x}}{(e^{x}-3)(e^{2x}+1)}dx
derivative of e^{x^2-y}
\frac{d}{dx}(e^{x^{2}-y})
integral of 2x(x^2+5)^{-4}
\int\:2x(x^{2}+5)^{-4}dx
area x^2+6,12+4x-x^2
area\:x^{2}+6,12+4x-x^{2}
sum from n=1 to infinity of 0.4^n
\sum\:_{n=1}^{\infty\:}0.4^{n}
derivative of f(x)=x^3-x^2
derivative\:f(x)=x^{3}-x^{2}
derivative of f(x)=4x^2+2
derivative\:f(x)=4x^{2}+2
sum from n=1 to infinity of 1/(n7^n)
\sum\:_{n=1}^{\infty\:}\frac{1}{n7^{n}}
tangent of 4x-x^2
tangent\:4x-x^{2}
derivative of ln(x+y)
derivative\:\ln(x+y)
(\partial)/(\partial z)(cos(z{w}(z)))
\frac{\partial\:}{\partial\:z}(\cos(z{w}(z)))
limit as x approaches 0 of (4^x-7^x)/x
\lim\:_{x\to\:0}(\frac{4^{x}-7^{x}}{x})
(\partial)/(\partial x)(e^{-6x}cos(2pit))
\frac{\partial\:}{\partial\:x}(e^{-6x}\cos(2πt))
integral of (3sqrt(x)-2x^{-3})
\int\:(3\sqrt{x}-2x^{-3})dx
derivative of (pix)/2
derivative\:\frac{πx}{2}
integral of 5/x-(10)/(x^2)
\int\:\frac{5}{x}-\frac{10}{x^{2}}dx
derivative of (x^3-2x+1(3x^3+2x^2-5x))
\frac{d}{dx}((x^{3}-2x+1)(3x^{3}+2x^{2}-5x))
limit as x approaches-infinity of x/(-1)
\lim\:_{x\to\:-\infty\:}(\frac{x}{-1})
(\partial)/(\partial y)(e^{yx}y^2)
\frac{\partial\:}{\partial\:y}(e^{yx}y^{2})
derivative of f(x)=(x-4)(x^2+8)
derivative\:f(x)=(x-4)(x^{2}+8)
y^'=4y+y^4
y^{\prime\:}=4y+y^{4}
derivative of (x^2-9x+14/((x-5)(x-10)))
\frac{d}{dx}(\frac{x^{2}-9x+14}{(x-5)(x-10)})
(\partial)/(\partial x)(yx^{-1})
\frac{\partial\:}{\partial\:x}(yx^{-1})
((x^2+1)dy)/(dx)+6x(y-1)=0,y(0)=6
\frac{(x^{2}+1)dy}{dx}+6x(y-1)=0,y(0)=6
integral of 1/(x^3)ln(x)
\int\:\frac{1}{x^{3}}\ln(x)dx
(\partial)/(\partial y)(x^2)
\frac{\partial\:}{\partial\:y}(x^{2})
integral of (3-2/(x^3)+1/(sqrt(x)))
\int\:(3-\frac{2}{x^{3}}+\frac{1}{\sqrt{x}})dx
integral from 0 to 1 of 2xsqrt(1+4x^2)
\int\:_{0}^{1}2x\sqrt{1+4x^{2}}dx
d/(dt)(-cos(t))
\frac{d}{dt}(-\cos(t))
integral from-2 to 3 of (x^3-4x)
\int\:_{-2}^{3}(x^{3}-4x)dx
area x+2,x^2,0
area\:x+2,x^{2},0
tangent of 9sqrt(x)
tangent\:9\sqrt{x}
(\partial ^2)/(\partial t^2)(ln(3x+3ct))
\frac{\partial\:^{2}}{\partial\:t^{2}}(\ln(3x+3ct))
e^yy^'=(sin(x))/(cos^2(x))
e^{y}y^{\prime\:}=\frac{\sin(x)}{\cos^{2}(x)}
derivative of e^{sin(x^2})
\frac{d}{dx}(e^{\sin(x^{2})})
y^'-7y=sin(2x)
y^{\prime\:}-7y=\sin(2x)
derivative of y=1+x-4x^{1/2}
derivative\:y=1+x-4x^{\frac{1}{2}}
derivative of arctan((1+x)/(1-x))
derivative\:\arctan(\frac{1+x}{1-x})
2+(dy)/(dx)=sqrt(2x+y)
2+\frac{dy}{dx}=\sqrt{2x+y}
derivative of (inx/x)
\frac{d}{dx}(\frac{inx}{x})
limit as x approaches 8 of e^{3/((x-8))}
\lim\:_{x\to\:8}(e^{\frac{3}{(x-8)}})
integral of 2/(x-2)
\int\:\frac{2}{x-2}dx
integral of arccsc(x/2)
\int\:\arccsc(\frac{x}{2})dx
y^{''}-8y^'+13y=0
y^{\prime\:\prime\:}-8y^{\prime\:}+13y=0
limit as n approaches infinity of 1-n^2
\lim\:_{n\to\:\infty\:}(1-n^{2})
(\partial)/(\partial x)(-7(x+2y)^5)
\frac{\partial\:}{\partial\:x}(-7(x+2y)^{5})
integral of 1/(y^{2/3)}
\int\:\frac{1}{y^{\frac{2}{3}}}dy
(d^2)/(dx^2)(2/(1+x^2))
\frac{d^{2}}{dx^{2}}(\frac{2}{1+x^{2}})
derivative of-x+1
\frac{d}{dx}(-x+1)
integral of pi^x-x^{-1}
\int\:π^{x}-x^{-1}dx
integral from 7 to 14 of-30x^2+340x
\int\:_{7}^{14}-30x^{2}+340xdx
limit as x approaches i of (x^4-1)/(x-i)
\lim\:_{x\to\:i}(\frac{x^{4}-1}{x-i})
(dy)/(dx)+cos(x)=(y+sin(x))^2
\frac{dy}{dx}+\cos(x)=(y+\sin(x))^{2}
derivative of f(x)=sin(2x)cos(2x)
derivative\:f(x)=\sin(2x)\cos(2x)
derivative of (4x)/(x+1)
derivative\:\frac{4x}{x+1}
integral of e^{-5x}sin(4x)
\int\:e^{-5x}\sin(4x)dx
(dy)/(dx)= x/y ,y(0)=-4
\frac{dy}{dx}=\frac{x}{y},y(0)=-4
x^2y^{''}-3xy^'+4y=0
x^{2}y^{\prime\:\prime\:}-3xy^{\prime\:}+4y=0
taylor ln(x),x=4
taylor\:\ln(x),x=4
y^{''}+y=sin(x),y(0)=1,y(pi/2)=0
y^{\prime\:\prime\:}+y=\sin(x),y(0)=1,y(\frac{π}{2})=0
derivative of x^7(1-2/(x+4))
derivative\:x^{7}(1-\frac{2}{x+4})
derivative of (2x-6^4(x^2+x+1)^5)
\frac{d}{dx}((2x-6)^{4}(x^{2}+x+1)^{5})
integral of (t+1)^2
\int\:(t+1)^{2}dt
integral from 1 to 4 of (5x+sqrt(x))
\int\:_{1}^{4}(5x+\sqrt{x})dx
integral of cos(1+5t)
\int\:\cos(1+5t)dt
integral of x(arctan(x))^2
\int\:x(\arctan(x))^{2}dx
integral of (tan(x))/(cos^3(x))
\int\:\frac{\tan(x)}{\cos^{3}(x)}dx
(dy)/(y^2-4)=dx
\frac{dy}{y^{2}-4}=dx
(\partial)/(\partial x)(-3x)
\frac{\partial\:}{\partial\:x}(-3x)
integral of 1/(x^2)-1/(xsqrt(x))+5
\int\:\frac{1}{x^{2}}-\frac{1}{x\sqrt{x}}+5dx
(dy)/(dx)=sqrt(3y)e^{x+7}
\frac{dy}{dx}=\sqrt{3y}e^{x+7}
integral of-(cos(x))/x
\int\:-\frac{\cos(x)}{x}dx
y^{''}-4y^'+5y=e^{-x}
y^{\prime\:\prime\:}-4y^{\prime\:}+5y=e^{-x}
1
..
490
491
492
493
494
..
2459