Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
y^'= 1/2 y
y^{\prime\:}=\frac{1}{2}y
derivative of 4^{cos(3t)}
derivative\:4^{\cos(3t)}
laplacetransform sin(t-pi)
laplacetransform\:\sin(t-π)
integral of (3x)/(x^2-x-2)
\int\:\frac{3x}{x^{2}-x-2}dx
(x-1)dy+(y-x^2+2x^{-3})dx=0
(x-1)dy+(y-x^{2}+2x^{-3})dx=0
area x=y^{1/2},x=2[0,2]
area\:x=y^{\frac{1}{2}},x=2[0,2]
tangent of f(x)=x^2,\at x=0.2
tangent\:f(x)=x^{2},\at\:x=0.2
derivative of f(x)= 7/(x^2)
derivative\:f(x)=\frac{7}{x^{2}}
integral of 1/3 sec(x)tan(x)
\int\:\frac{1}{3}\sec(x)\tan(x)dx
derivative of-1/(x^2+1)
\frac{d}{dx}(-\frac{1}{x^{2}}+1)
limit as x approaches infinity of 1-1^x
\lim\:_{x\to\:\infty\:}(1-1^{x})
y=(3x^2-4x)e^{5x}
y=(3x^{2}-4x)e^{5x}
integral of 2sin(3x)cos(3x)
\int\:2\sin(3x)\cos(3x)dx
integral of 1/(sqrt(9-x^2))
\int\:\frac{1}{\sqrt{9-x^{2}}}dx
integral of (x^2)arctan(7x)
\int\:(x^{2})\arctan(7x)dx
integral of 2x^2ln(x)
\int\:2x^{2}\ln(x)dx
derivative of f(x)=(1+7x^2)(x-x^2)
derivative\:f(x)=(1+7x^{2})(x-x^{2})
slope of (3,-5),(8,4)
slope\:(3,-5),(8,4)
derivative of cos((1-e^{3x}/(1+e^{3x)}))
\frac{d}{dx}(\cos(\frac{1-e^{3x}}{1+e^{3x}}))
y^'+3y=t+e^{-2t}
y^{\prime\:}+3y=t+e^{-2t}
integral of (x^2arcsin(x))/(sqrt(1-x^2))
\int\:\frac{x^{2}\arcsin(x)}{\sqrt{1-x^{2}}}dx
y^{''}+y=sin(2)(x)
y^{\prime\:\prime\:}+y=\sin(2)(x)
integral from 0 to 4 of sqrt(16-x^2)
\int\:_{0}^{4}\sqrt{16-x^{2}}dx
derivative of 1/(x^{19)}
derivative\:\frac{1}{x^{19}}
derivative of (t+2t^2)/(1+t^2)
derivative\:\frac{t+2t^{2}}{1+t^{2}}
integral of 1/((e^{x/a)-e^{-x/a})^{-2}}
\int\:\frac{1}{(e^{\frac{x}{a}}-e^{-\frac{x}{a}})^{-2}}dx
integral of e^xcos(6x)
\int\:e^{x}\cos(6x)dx
integral from-1 to 4 of 3x^2+8x-5
\int\:_{-1}^{4}3x^{2}+8x-5dx
(dy}{dx}=\frac{x^2+2y)/x ,y(1)=2
\frac{dy}{dx}=\frac{x^{2}+2y}{x},y(1)=2
integral of (7-5x)/(sqrt(64-49x^2))
\int\:\frac{7-5x}{\sqrt{64-49x^{2}}}dx
integral of ((2x-3))/(sqrt(x^2+6x+4))
\int\:\frac{(2x-3)}{\sqrt{x^{2}+6x+4}}dx
derivative of f(x)=e^x+e^{-x}
derivative\:f(x)=e^{x}+e^{-x}
limit as t approaches 0 of (1-cos(t))/t
\lim\:_{t\to\:0}(\frac{1-\cos(t)}{t})
derivative of 4cos(x/2)
\frac{d}{dx}(4\cos(\frac{x}{2}))
y^{''}-3y=0
y^{\prime\:\prime\:}-3y=0
limit as x approaches 0+of arctan(2/x)
\lim\:_{x\to\:0+}(\arctan(\frac{2}{x}))
y^{''}+2y^'+20y=0,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}+2y^{\prime\:}+20y=0,y(0)=1,y^{\prime\:}(0)=0
tangent of f(x)=x-5cos(x),\at x=0
tangent\:f(x)=x-5\cos(x),\at\:x=0
sum from n=0 to infinity of (x-10)^n
\sum\:_{n=0}^{\infty\:}(x-10)^{n}
derivative of f(x)= 1/(3-x)
derivative\:f(x)=\frac{1}{3-x}
integral from 0 to 3 of 2
\int\:_{0}^{3}2dx
derivative of (14)/(ln(x))
derivative\:\frac{14}{\ln(x)}
inverse oflaplace 7/((s-7)^8)
inverselaplace\:\frac{7}{(s-7)^{8}}
integral of θcsc^2(θ)
\int\:θ\csc^{2}(θ)dθ
integral of 5x-6
\int\:5x-6dx
derivative of sqrt(x/(x^2+6))
derivative\:\sqrt{\frac{x}{x^{2}+6}}
[x-yarctan(y/x)]dx+xarctan(y/x)dy=0
[x-y\arctan(\frac{y}{x})]dx+x\arctan(\frac{y}{x})dy=0
integral from 7 to infinity of xe^{-2x}
\int\:_{7}^{\infty\:}xe^{-2x}dx
ty^'+2y=t^2
ty^{\prime\:}+2y=t^{2}
limit as x approaches infinity of (e^{2x-7})/(6x)
\lim\:_{x\to\:\infty\:}(\frac{e^{2x-7}}{6x})
integral of (x^2-7)/(7x)
\int\:\frac{x^{2}-7}{7x}dx
derivative of 7e^xsqrt(x)
derivative\:7e^{x}\sqrt{x}
limit as x approaches infinity of 25-2x
\lim\:_{x\to\:\infty\:}(25-2x)
derivative of ln|ln(5x)|
derivative\:\ln\left|\ln(5x)\right|
integral of 4/(xln(9x))
\int\:\frac{4}{x\ln(9x)}dx
integral of (3x^2-2x)
\int\:(3x^{2}-2x)dx
integral of cos(2kx)
\int\:\cos(2kx)dx
derivative of 2-4x^2
\frac{d}{dx}(2-4x^{2})
integral of x/(x^2-x+1)
\int\:\frac{x}{x^{2}-x+1}dx
(dy)/(dx)=(x-y)/(x+2y),y(0)=1
\frac{dy}{dx}=\frac{x-y}{x+2y},y(0)=1
integral from 0 to 2 of 1/((x+1)^4)
\int\:_{0}^{2}\frac{1}{(x+1)^{4}}dx
derivative of f(x)=(arccot(x))^5
derivative\:f(x)=(\arccot(x))^{5}
integral of (x+1)(x-2)
\int\:(x+1)(x-2)dx
derivative of f(x)=(1-5x)/(4+x)
derivative\:f(x)=\frac{1-5x}{4+x}
(\partial)/(\partial x)(pi^7)
\frac{\partial\:}{\partial\:x}(π^{7})
derivative of 2sin^2(2x)
\frac{d}{dx}(2\sin^{2}(2x))
derivative of f(x)= 3/(x-6)
derivative\:f(x)=\frac{3}{x-6}
limit as x approaches-2-of (x^2)/(x+2)
\lim\:_{x\to\:-2-}(\frac{x^{2}}{x+2})
limit as n approaches infinity of n^2
\lim\:_{n\to\:\infty\:}(n^{2})
derivative of e^{-x}*ln(x)
\frac{d}{dx}(e^{-x}\cdot\:\ln(x))
tangent of y=2x^3-3x,(1,-1)
tangent\:y=2x^{3}-3x,(1,-1)
4sqrt(xy)((dy)/(dx))=3
4\sqrt{xy}(\frac{dy}{dx})=3
limit as x approaches 0 of b+0^c*ln(0)
\lim\:_{x\to\:0}(b+0^{c}\cdot\:\ln(0))
limit as k approaches infinity of 2k+1
\lim\:_{k\to\:\infty\:}(2k+1)
integral from 0 to 4 of (16-x^2)
\int\:_{0}^{4}(16-x^{2})dx
d/(dy)((x^2)/(y^2+1))
\frac{d}{dy}(\frac{x^{2}}{y^{2}+1})
tangent of f(x)=4e^xcos(x),\at x=0
tangent\:f(x)=4e^{x}\cos(x),\at\:x=0
derivative of y=(5x^2+4)/(x+3)
derivative\:y=\frac{5x^{2}+4}{x+3}
integral from 0 to pi/4 of xsin(8x)
\int\:_{0}^{\frac{π}{4}}x\sin(8x)dx
maclaurin x^2ln(9+x)
maclaurin\:x^{2}\ln(9+x)
tangent of y=sqrt(2x),(32,8)
tangent\:y=\sqrt{2x},(32,8)
integral of cos(14x)cos(5x)
\int\:\cos(14x)\cos(5x)dx
integral of (sqrt(tan(x)+1))/(cos^2(x))
\int\:\frac{\sqrt{\tan(x)+1}}{\cos^{2}(x)}dx
integral of x\sqrt[3]{2x+1}
\int\:x\sqrt[3]{2x+1}dx
(\partial)/(\partial y)(y^5cos(2x))
\frac{\partial\:}{\partial\:y}(y^{5}\cos(2x))
integral of (3x^2)/(sqrt(x^3+8))
\int\:\frac{3x^{2}}{\sqrt{x^{3}+8}}dx
integral of x^2sin(pi)x
\int\:x^{2}\sin(π)xdx
(dy)/(dx)= y/3+3x+7
\frac{dy}{dx}=\frac{y}{3}+3x+7
integral of (-8cos(-2))d
\int\:(-8\cos(-2))ddd
integral of 1/(x^4sqrt(x^2+5))
\int\:\frac{1}{x^{4}\sqrt{x^{2}+5}}dx
(\partial)/(\partial x)(sin(2x+3y+z))
\frac{\partial\:}{\partial\:x}(\sin(2x+3y+z))
limit as x approaches 3 of ln(x+3)
\lim\:_{x\to\:3}(\ln(x+3))
integral of (2x^2-7x-1)/((x-1)(x+1)^2)
\int\:\frac{2x^{2}-7x-1}{(x-1)(x+1)^{2}}dx
y^'=(5x^3+y^3)/(xy^2)
y^{\prime\:}=\frac{5x^{3}+y^{3}}{xy^{2}}
integral of 3cos(sqrt(7x))
\int\:3\cos(\sqrt{7x})dx
y^{''}+49y^'=0
y^{\prime\:\prime\:}+49y^{\prime\:}=0
(\partial)/(\partial a)(cos(a)sin(a+2b))
\frac{\partial\:}{\partial\:a}(\cos(a)\sin(a+2b))
(\partial)/(\partial x)(3x^2-2xy+y^2-8y)
\frac{\partial\:}{\partial\:x}(3x^{2}-2xy+y^{2}-8y)
limit as x approaches infinity of sqrt(x+\sqrt{x)}-sqrt(x-\sqrt{x)}
\lim\:_{x\to\:\infty\:}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})
limit as x approaches 2 of x^3-1
\lim\:_{x\to\:2}(x^{3}-1)
1
..
1507
1508
1509
1510
1511
..
2459