Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
y^'=5ysin(4x)
y^{\prime\:}=5y\sin(4x)
integral of (-1)/(sqrt(x))
\int\:\frac{-1}{\sqrt{x}}dx
inverse oflaplace 1/(2s-5)
inverselaplace\:\frac{1}{2s-5}
derivative of ln(sin(3x))
\frac{d}{dx}(\ln(\sin(3x)))
derivative of x^{2/3}-x^{1/3}+4
\frac{d}{dx}(x^{\frac{2}{3}}-x^{\frac{1}{3}}+4)
d/(dy)(-y)
\frac{d}{dy}(-y)
integral of xe^{12x}
\int\:xe^{12x}dx
(\partial)/(\partial x)(-4sqrt(x))
\frac{\partial\:}{\partial\:x}(-4\sqrt{x})
integral of 1/(sqrt(2x-5))
\int\:\frac{1}{\sqrt{2x-5}}dx
(\partial)/(\partial x)(2zy)
\frac{\partial\:}{\partial\:x}(2zy)
area x=((y-4)^2)/4 ,y=7-x
area\:x=\frac{(y-4)^{2}}{4},y=7-x
derivative of-243sin(3x)
\frac{d}{dx}(-243\sin(3x))
derivative of ln(e^{3x})
derivative\:\ln(e^{3x})
laplacetransform (t^2-3)^2
laplacetransform\:(t^{2}-3)^{2}
derivative of (x+3/(x-2))
\frac{d}{dx}(\frac{x+3}{x-2})
(\partial)/(\partial x)(xy^3+2xy)
\frac{\partial\:}{\partial\:x}(xy^{3}+2xy)
limit as x approaches infinity of tan((2xpi)/(1+8x))
\lim\:_{x\to\:\infty\:}(\tan(\frac{2xπ}{1+8x}))
integral of 1/(sqrt(36x^2-49))
\int\:\frac{1}{\sqrt{36x^{2}-49}}dx
derivative of (4x/((x^2+2)^2))
\frac{d}{dx}(\frac{4x}{(x^{2}+2)^{2}})
(\partial)/(\partial z)(x^2+y^2+z^2)
\frac{\partial\:}{\partial\:z}(x^{2}+y^{2}+z^{2})
limit as x approaches 0+of x^{sin(2x)}
\lim\:_{x\to\:0+}(x^{\sin(2x)})
tangent of y=6+5x^2-2x^3
tangent\:y=6+5x^{2}-2x^{3}
derivative of sin(2xcos(3x))
\frac{d}{dx}(\sin(2x)\cos(3x))
(\partial)/(\partial x)(z^{xy})
\frac{\partial\:}{\partial\:x}(z^{xy})
y^{''}+9y=4csc^2(3x)
y^{\prime\:\prime\:}+9y=4\csc^{2}(3x)
tangent of f(x)=x^3-3x+2,(3,20)
tangent\:f(x)=x^{3}-3x+2,(3,20)
laplacetransform e^{2t+3}
laplacetransform\:e^{2t+3}
derivative of-cos(3x)
derivative\:-\cos(3x)
tangent of f(x)= 1/(sqrt(8x)),\at x=9
tangent\:f(x)=\frac{1}{\sqrt{8x}},\at\:x=9
(\partial)/(\partial x)(2x^3y^2+2y+4x)
\frac{\partial\:}{\partial\:x}(2x^{3}y^{2}+2y+4x)
integral of x^3sqrt(x^4+1)
\int\:x^{3}\sqrt{x^{4}+1}dx
(d^2y)/(dx^2)+a^2*y-e^{b-x}-1=0
\frac{d^{2}y}{dx^{2}}+a^{2}\cdot\:y-e^{b-x}-1=0
1/y dx-x/((ln(x))^3)dy=0
\frac{1}{y}dx-\frac{x}{(\ln(x))^{3}}dy=0
derivative of 1/(y^2)-3/(y^4)(y+5y^3)
derivative\:\frac{1}{y^{2}}-\frac{3}{y^{4}}(y+5y^{3})
integral of 3x^{-3}+sin(x)
\int\:3x^{-3}+\sin(x)dx
(dy)/(dx)= y/x+x/y
\frac{dy}{dx}=\frac{y}{x}+\frac{x}{y}
(\partial)/(\partial θ)(r(θ)*cos(θ))
\frac{\partial\:}{\partial\:θ}(r(θ)\cdot\:\cos(θ))
derivative of e^{rt}
derivative\:e^{rt}
integral from-pi to pi of sin^3(x)
\int\:_{-π}^{π}\sin^{3}(x)dx
limit as x approaches 0+of xln(tan(3x))
\lim\:_{x\to\:0+}(x\ln(\tan(3x)))
derivative of-(19)/((2x-5)^2)
derivative\:-\frac{19}{(2x-5)^{2}}
limit as x approaches-26.8 of-26.8
\lim\:_{x\to\:-26.8}(-26.8)
taylor 4/(x+2),0
taylor\:\frac{4}{x+2},0
limit as x approaches infinity of 10*e^{(-x)/2}+4
\lim\:_{x\to\:\infty\:}(10\cdot\:e^{\frac{-x}{2}}+4)
(dy)/(dx)=(4x)/(9y)
\frac{dy}{dx}=\frac{4x}{9y}
derivative of e^{-1x}
\frac{d}{dx}(e^{-1x})
slope ofintercept (-1,-2),(3,2)
slopeintercept\:(-1,-2),(3,2)
derivative of ln(x+p)
derivative\:\ln(x+p)
d/(dy)(-4y)
\frac{d}{dy}(-4y)
sec(x)dy+csc(y)dx=0
\sec(x)dy+\csc(y)dx=0
(\partial)/(\partial x)(ln(x^4+y))
\frac{\partial\:}{\partial\:x}(\ln(x^{4}+y))
y^'=y(2-ty)
y^{\prime\:}=y(2-ty)
(\partial)/(\partial x)(2xy^2z-4xz^2)
\frac{\partial\:}{\partial\:x}(2xy^{2}z-4xz^{2})
derivative of y=(3(x-1))/(4xsqrt(x))
derivative\:y=\frac{3(x-1)}{4x\sqrt{x}}
integral of xsin((npix)/(10))
\int\:x\sin(\frac{nπx}{10})dx
derivative of f(t)=t^9-1
derivative\:f(t)=t^{9}-1
(\partial)/(\partial y)(9x^{6y})
\frac{\partial\:}{\partial\:y}(9x^{6y})
(\partial)/(\partial x)(2xcos(x^2+y^2))
\frac{\partial\:}{\partial\:x}(2x\cos(x^{2}+y^{2}))
(dy)/(dt)=yr(1000-y)
\frac{dy}{dt}=yr(1000-y)
area y=sec^2(x),y=8cos(x),-pi/3 , pi/3
area\:y=\sec^{2}(x),y=8\cos(x),-\frac{π}{3},\frac{π}{3}
integral from 1 to infinity of (ln(x))/(x^{3/2)}
\int\:_{1}^{\infty\:}\frac{\ln(x)}{x^{\frac{3}{2}}}dx
derivative of 1000(1+x/(12)^{60})
\frac{d}{dx}(1000(1+\frac{x}{12})^{60})
derivative of f(x)=(1-x)(x^2-7)^2
derivative\:f(x)=(1-x)(x^{2}-7)^{2}
tangent of f(x)=sqrt(x^2-x+9),\at x=1
tangent\:f(x)=\sqrt{x^{2}-x+9},\at\:x=1
inverse oflaplace (10)/(s(s^2+8s+25))
inverselaplace\:\frac{10}{s(s^{2}+8s+25)}
(\partial)/(\partial x)(xarctan(yz))
\frac{\partial\:}{\partial\:x}(x\arctan(yz))
limit as x approaches 0 of (sin(x/2))/x
\lim\:_{x\to\:0}(\frac{\sin(\frac{x}{2})}{x})
limit as x approaches infinity of (1+x)^{2/x}
\lim\:_{x\to\:\infty\:}((1+x)^{\frac{2}{x}})
y^{''}-4y^'+3y=0,y(0)=2,y^'(0)=3
y^{\prime\:\prime\:}-4y^{\prime\:}+3y=0,y(0)=2,y^{\prime\:}(0)=3
integral from 0 to 2 of sqrt(5)
\int\:_{0}^{2}\sqrt{5}dx
(\partial)/(\partial x)(xy^9-x^2y)
\frac{\partial\:}{\partial\:x}(xy^{9}-x^{2}y)
limit as x approaches 6 of sqrt(x^2+13)
\lim\:_{x\to\:6}(\sqrt{x^{2}+13})
(dy)/(dx)=2xy^4
\frac{dy}{dx}=2xy^{4}
derivative of y=ln((9+e^x)/(9-e^x))
derivative\:y=\ln(\frac{9+e^{x}}{9-e^{x}})
limit as x approaches 3 of (x+3)/(x^2-9)
\lim\:_{x\to\:3}(\frac{x+3}{x^{2}-9})
inverse oflaplace (2s+2)/(s+10)
inverselaplace\:\frac{2s+2}{s+10}
limit as x approaches 1-of (-1)/((x-1)^{2/3)}
\lim\:_{x\to\:1-}(\frac{-1}{(x-1)^{\frac{2}{3}}})
(\partial)/(\partial y)(3x^2-2y^3+6xy^2-8)
\frac{\partial\:}{\partial\:y}(3x^{2}-2y^{3}+6xy^{2}-8)
area x^21,8
area\:x^{2}1,8
tangent of f(x)=(3x)/(x-2),\at a=4
tangent\:f(x)=\frac{3x}{x-2},\at\:a=4
limit as x approaches 4 of x-2
\lim\:_{x\to\:4}(x-2)
tangent of 2cos(x)+cos^2(x)
tangent\:2\cos(x)+\cos^{2}(x)
integral of (sin^2(x))/(sqrt(1+cos(x)))
\int\:\frac{\sin^{2}(x)}{\sqrt{1+\cos(x)}}dx
limit as x approaches-2-of 1/(x+2)
\lim\:_{x\to\:-2-}(\frac{1}{x+2})
integral of 3^x-sec^2(x)
\int\:3^{x}-\sec^{2}(x)dx
f(x)=9ln(x)
f(x)=9\ln(x)
integral of sqrt(x)(1-x)^2
\int\:\sqrt{x}(1-x)^{2}dx
(\partial)/(\partial x)((2xy^2)/(1+x^2y^2))
\frac{\partial\:}{\partial\:x}(\frac{2xy^{2}}{1+x^{2}y^{2}})
tangent of y=(x^2-3)(x^3-2x),(-2,-4)
tangent\:y=(x^{2}-3)(x^{3}-2x),(-2,-4)
derivative of (log_{7}(x-x^2)/(x^3))
\frac{d}{dx}(\frac{\log_{7}(x-x^{2})}{x^{3}})
derivative of [x^2(x^2+5x)]^4
derivative\:[x^{2}(x^{2}+5x)]^{4}
taylor e^{x^4}
taylor\:e^{x^{4}}
limit as x approaches 3 of (x-1)^2
\lim\:_{x\to\:3}((x-1)^{2})
(d^2y)/(dx^2)-3(dy)/(dx)+2y=0
\frac{d^{2}y}{dx^{2}}-3\frac{dy}{dx}+2y=0
x^{''}+9x=27,x(0)=4,x^'(0)=6
x^{\prime\:\prime\:}+9x=27,x(0)=4,x^{\prime\:}(0)=6
integral of (sqrt(1+\sqrt{x)})/x
\int\:\frac{\sqrt{1+\sqrt{x}}}{x}dx
sum from n=1 to infinity of (2n)/(5n-4)
\sum\:_{n=1}^{\infty\:}\frac{2n}{5n-4}
integral of (sqrt(x^2-4))/(x^6)
\int\:\frac{\sqrt{x^{2}-4}}{x^{6}}dx
tangent of y=x^3-3x^2+25
tangent\:y=x^{3}-3x^{2}+25
integral from 0 to pi of 9e^xsin(x)
\int\:_{0}^{π}9e^{x}\sin(x)dx
1
..
196
197
198
199
200
..
2459