Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
area 3-x^2,6-4x
area\:3-x^{2},6-4x
integral of (1+x)(x-2)^7
\int\:(1+x)(x-2)^{7}dx
derivative of 5\sqrt[5]{x^2}-4/x+sqrt(2)
\frac{d}{dx}(5\sqrt[5]{x^{2}}-\frac{4}{x}+\sqrt{2})
inverse oflaplace (24)/(s^4)
inverselaplace\:\frac{24}{s^{4}}
(\partial)/(\partial x)(3-x^2+xy-3y^2)
\frac{\partial\:}{\partial\:x}(3-x^{2}+xy-3y^{2})
(\partial)/(\partial y)(sqrt(2x^2-4y^3))
\frac{\partial\:}{\partial\:y}(\sqrt{2x^{2}-4y^{3}})
tangent of y= 9/(x^2+2),(1,3)
tangent\:y=\frac{9}{x^{2}+2},(1,3)
d/(dy)(ln(((5y+1)^2)/(sqrt(y^2+1))))
\frac{d}{dy}(\ln(\frac{(5y+1)^{2}}{\sqrt{y^{2}+1}}))
derivative of ln(4x^3+x)
derivative\:\ln(4x^{3}+x)
integral of 5sqrt(5x)
\int\:5\sqrt{5x}dx
(\partial)/(\partial x)(sin(x)-3cos(y))
\frac{\partial\:}{\partial\:x}(\sin(x)-3\cos(y))
(\partial}{\partial x}(\frac{sin(t))/t)
\frac{\partial\:}{\partial\:x}(\frac{\sin(t)}{t})
tangent of-0.025x^2+9x
tangent\:-0.025x^{2}+9x
integral of e^{cos(x)}*sin(x)
\int\:e^{\cos(x)}\cdot\:\sin(x)dx
limit as x approaches-1 of x-1/(ln|x|)
\lim\:_{x\to\:-1}(x-\frac{1}{\ln\left|x\right|})
(dy)/(dx)-2y=x^2e^{2x}
\frac{dy}{dx}-2y=x^{2}e^{2x}
derivative of f(x)=4sin^2(5x+3)
derivative\:f(x)=4\sin^{2}(5x+3)
integral from 3 to 8 of x/(x^2+6x+13)
\int\:_{3}^{8}\frac{x}{x^{2}+6x+13}dx
(12y^2t^2+10y)dy+(8y^3t)dt=0
(12y^{2}t^{2}+10y)dy+(8y^{3}t)dt=0
derivative of f(x)=sqrt(11x)
derivative\:f(x)=\sqrt{11x}
integral of (6x-5)/(3x^2+5x)
\int\:\frac{6x-5}{3x^{2}+5x}dx
area y=2x^3-9x,y=3x^2-10
area\:y=2x^{3}-9x,y=3x^{2}-10
y^{''}-2y^'+5y=e^xcos(2x)
y^{\prime\:\prime\:}-2y^{\prime\:}+5y=e^{x}\cos(2x)
derivative of cos(3x+1)
\frac{d}{dx}(\cos(3x+1))
derivative of xsqrt(3-x)
\frac{d}{dx}(x\sqrt{3-x})
(\partial)/(\partial x)(-3xe^{2xy})
\frac{\partial\:}{\partial\:x}(-3xe^{2xy})
(dy)/(dx)=x(8-y)
\frac{dy}{dx}=x(8-y)
(d^2)/(dx^2)(4e^xcos(x))
\frac{d^{2}}{dx^{2}}(4e^{x}\cos(x))
integral of (e^x+1)^2
\int\:(e^{x}+1)^{2}dx
derivative of-e^x(x-1)
\frac{d}{dx}(-e^{x}(x-1))
derivative of (cos(x))^2
derivative\:(\cos(x))^{2}
limit as x approaches 2 of 3e^{x-2}
\lim\:_{x\to\:2}(3e^{x-2})
integral of sin^9(x)cos^6(x)
\int\:\sin^{9}(x)\cos^{6}(x)dx
slope of (48)(4-4)
slope\:(48)(4-4)
integral of e^{(1-s)t}
\int\:e^{(1-s)t}dt
(4+x)y^'=9y
(4+x)y^{\prime\:}=9y
integral of x/(\sqrt[3]{x-6)}
\int\:\frac{x}{\sqrt[3]{x-6}}dx
(\partial)/(\partial x)(y^2-4x)
\frac{\partial\:}{\partial\:x}(y^{2}-4x)
derivative of (x^3/(1+x^2))
\frac{d}{dx}(\frac{x^{3}}{1+x^{2}})
integral of (x^2-4)/(4x)
\int\:\frac{x^{2}-4}{4x}dx
sum from n=0 to infinity of (n+1)/(2n-3)
\sum\:_{n=0}^{\infty\:}\frac{n+1}{2n-3}
integral of (2x-2)/(1+(x-1)^2)
\int\:\frac{2x-2}{1+(x-1)^{2}}dx
(dx)/(dt)=7(x^2+1),x(pi/4)=1
\frac{dx}{dt}=7(x^{2}+1),x(\frac{π}{4})=1
derivative of 6t^2-4t+9
derivative\:6t^{2}-4t+9
laplacetransform f(t)=2e^{-t}cos(4t)
laplacetransform\:f(t)=2e^{-t}\cos(4t)
integral of (cos(2x))/((1+sin(2x))^2)
\int\:\frac{\cos(2x)}{(1+\sin(2x))^{2}}dx
derivative of sqrt(12x-x^2)
\frac{d}{dx}(\sqrt{12x-x^{2}})
integral of 6sin^5(x)cos(x)
\int\:6\sin^{5}(x)\cos(x)dx
derivative of 3/4 x^{4/3}-3/8 x^{2/3}+8
\frac{d}{dx}(\frac{3}{4}x^{\frac{4}{3}}-\frac{3}{8}x^{\frac{2}{3}}+8)
derivative of x^4-3x^2+4
\frac{d}{dx}(x^{4}-3x^{2}+4)
integral of x(x-1)(x-2)
\int\:x(x-1)(x-2)dx
derivative of y=(2x^2-3)^2
derivative\:y=(2x^{2}-3)^{2}
integral from 1 to 9 of 4sqrt(x)
\int\:_{1}^{9}4\sqrt{x}dx
integral of 1/(tan(x)+sin(x))
\int\:\frac{1}{\tan(x)+\sin(x)}dx
limit as x approaches 1+of 2/(x^3-1)
\lim\:_{x\to\:1+}(\frac{2}{x^{3}-1})
integral of-2picos^4(pix)sin^5(pix)
\int\:-2π\cos^{4}(πx)\sin^{5}(πx)dx
integral of 5xsqrt(2x+3)
\int\:5x\sqrt{2x+3}dx
tangent of f(x)=x(3-x)^2,\at x=2
tangent\:f(x)=x(3-x)^{2},\at\:x=2
integral of 1/(sqrt(x)(1+\sqrt{x))^3}
\int\:\frac{1}{\sqrt{x}(1+\sqrt{x})^{3}}dx
limit as x approaches 2 of ax^2-2bx+1
\lim\:_{x\to\:2}(ax^{2}-2bx+1)
integral of (e^x-e^{-x})/(e^x+e^{-x)}
\int\:\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}dx
(\partial)/(\partial x)(sin^2(kx))
\frac{\partial\:}{\partial\:x}(\sin^{2}(kx))
y^'-9/x y=((y^5))/(x^8)
y^{\prime\:}-\frac{9}{x}y=\frac{(y^{5})}{x^{8}}
derivative of y=sin(5x)
derivative\:y=\sin(5x)
integral of (x^2+1)^3
\int\:(x^{2}+1)^{3}dx
integral of 1/(2t)
\int\:\frac{1}{2t}dt
tangent of f(x)=x^3,\at x=2
tangent\:f(x)=x^{3},\at\:x=2
integral of 4xarctan(x)
\int\:4x\arctan(x)dx
limit as x approaches 9 of 1/(x-9)
\lim\:_{x\to\:9}(\frac{1}{x-9})
derivative of (x+2/x (7-2x^3))
\frac{d}{dx}((x+\frac{2}{x})(7-2x^{3}))
1/y (dy)/(dx)=e^x+ln(y)
\frac{1}{y}\frac{dy}{dx}=e^{x}+\ln(y)
(8-r^2)dr=r^3sin(θ)dθ,r(0)=2
(8-r^{2})dr=r^{3}\sin(θ)dθ,r(0)=2
integral of 4x^3-6x^2+3
\int\:4x^{3}-6x^{2}+3dx
integral of 19tan^5(x)sec^4(x)
\int\:19\tan^{5}(x)\sec^{4}(x)dx
derivative of f(x)=2e^{-3x+9}
derivative\:f(x)=2e^{-3x+9}
slope of (-2,-1),(8,-3)
slope\:(-2,-1),(8,-3)
integral of (sec(x))/(tan(x)+cot(x))
\int\:\frac{\sec(x)}{\tan(x)+\cot(x)}dx
integral of 4x-2x^2
\int\:4x-2x^{2}dx
integral of a^{(3x+3)}
\int\:a^{(3x+3)}dx
y'=y(3-y)-9/4
y\prime\:=y(3-y)-\frac{9}{4}
integral of \sqrt[3]{x}-2
\int\:\sqrt[3]{x}-2dx
derivative of y=((3x^2+4)(2x+1))/(5x-9)
derivative\:y=\frac{(3x^{2}+4)(2x+1)}{5x-9}
f(z)=sqrt((z-8)/(z+8))
f(z)=\sqrt{\frac{z-8}{z+8}}
limit as x approaches 3 of 5/(x^2-9)
\lim\:_{x\to\:3}(\frac{5}{x^{2}-9})
limit as x approaches 0+of x^{4x}
\lim\:_{x\to\:0+}(x^{4x})
(dy)/(dx)= 1/5 x
\frac{dy}{dx}=\frac{1}{5}x
tangent of f(x)=x^2-4,\at x=3
tangent\:f(x)=x^{2}-4,\at\:x=3
integral of e^{4θ}sin(5θ)
\int\:e^{4θ}\sin(5θ)dθ
area f(x)=3x^2,g(x)=-3x+6,[-4,2]
area\:f(x)=3x^{2},g(x)=-3x+6,[-4,2]
tangent of 4e^x-3x^2
tangent\:4e^{x}-3x^{2}
limit as x approaches 48 of (x^2)/8-6/x
\lim\:_{x\to\:48}(\frac{x^{2}}{8}-\frac{6}{x})
integral of x^2*e^{4x}
\int\:x^{2}\cdot\:e^{4x}dx
tangent of f(x)= 1/(x+2),\at x=9
tangent\:f(x)=\frac{1}{x+2},\at\:x=9
parity x^{sin(x)}
parity\:x^{\sin(x)}
integral of cos(x)cos(3x)
\int\:\cos(x)\cos(3x)dx
derivative of (x^2/(x+1))
\frac{d}{dx}(\frac{x^{2}}{x+1})
derivative of (6t)/(6+sqrt(t))
derivative\:\frac{6t}{6+\sqrt{t}}
(dy)/(dx)=xy+9x+2y+18
\frac{dy}{dx}=xy+9x+2y+18
36y^{''}-60y^'+26y=0,y(4)=2,y^'(4)=5
36y^{\prime\:\prime\:}-60y^{\prime\:}+26y=0,y(4)=2,y^{\prime\:}(4)=5
derivative of ((x+2)(x^2-2x+4))/(x^3)
derivative\:\frac{(x+2)(x^{2}-2x+4)}{x^{3}}
1
..
232
233
234
235
236
..
2459