Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
area y=cos(3x),(0.4,0.6)
area\:y=\cos(3x),(0.4,0.6)
derivative of arctan(\sqrt[3]{x})
\frac{d}{dx}(\arctan(\sqrt[3]{x}))
limit as x approaches-3 of 2x+5
\lim\:_{x\to\:-3}(2x+5)
limit as x approaches 2 of ln(2-x)
\lim\:_{x\to\:2}(\ln(2-x))
taylor 1/(x-1),14
taylor\:\frac{1}{x-1},14
integral of (-6x^2)/(x^4-1)
\int\:\frac{-6x^{2}}{x^{4}-1}dx
derivative of (-4/(x^2))
\frac{d}{dx}(\frac{-4}{x^{2}})
integral of xln^2(x)
\int\:x\ln^{2}(x)dx
integral of x/((x^2+1)^{23/2)}
\int\:\frac{x}{(x^{2}+1)^{\frac{23}{2}}}dx
limit as x approaches 10-of ln(100-x^2)
\lim\:_{x\to\:10-}(\ln(100-x^{2}))
(\partial)/(\partial y)(2y^2)
\frac{\partial\:}{\partial\:y}(2y^{2})
limit as x approaches infinity+of ix
\lim\:_{x\to\:\infty\:+}(ix)
integral from 0 to pi/2 of 1
\int\:_{0}^{\frac{π}{2}}1
derivative of 2/(x+8)
\frac{d}{dx}(\frac{2}{x+8})
(\partial)/(\partial x)(3-x/3-y/2)
\frac{\partial\:}{\partial\:x}(3-\frac{x}{3}-\frac{y}{2})
derivative of f(x)=-(x^2)/2-4x-10
derivative\:f(x)=-\frac{x^{2}}{2}-4x-10
integral of ((50x+6))/((7x+1)(x-1))
\int\:\frac{(50x+6)}{(7x+1)(x-1)}dx
(\partial)/(\partial y)((x-y)/(x+y))
\frac{\partial\:}{\partial\:y}(\frac{x-y}{x+y})
derivative of g(u)=sqrt(u+1)(1-8u^2)^7
derivative\:g(u)=\sqrt{u+1}(1-8u^{2})^{7}
derivative of ln(1+(ln(2)/x))
\frac{d}{dx}(\ln(1+\frac{\ln(2)}{x}))
integral from 0 to 2 of 2x^2-x^3
\int\:_{0}^{2}2x^{2}-x^{3}dx
derivative of 2x^2+4x+3
\frac{d}{dx}(2x^{2}+4x+3)
integral of (x-1)/((x^2+4x+5)^2)
\int\:\frac{x-1}{(x^{2}+4x+5)^{2}}dx
limit as x approaches infinity of (-2)/x
\lim\:_{x\to\:\infty\:}(\frac{-2}{x})
integral of 1/(xsqrt(81-x^2))
\int\:\frac{1}{x\sqrt{81-x^{2}}}dx
integral of 4sin^2(5x+3)+10x^{2/3}-1
\int\:4\sin^{2}(5x+3)+10x^{\frac{2}{3}}-1dx
derivative of (x+1/(3x+2))
\frac{d}{dx}(\frac{x+1}{3x+2})
expand 6x(x^2-5)^2
expand\:6x(x^{2}-5)^{2}
derivative of (9x/(x+4))
\frac{d}{dx}(\frac{9x}{x+4})
(dy)/(dx)=4y^2
\frac{dy}{dx}=4y^{2}
inverse oflaplace (s+3)/((s+2)(s+1))
inverselaplace\:\frac{s+3}{(s+2)(s+1)}
integral of-2/(x^{1/2)}
\int\:-\frac{2}{x^{\frac{1}{2}}}dx
(\partial)/(\partial x)(cos(x-y)-xe^y)
\frac{\partial\:}{\partial\:x}(\cos(x-y)-xe^{y})
slope of f(x)=3x-x^2
slope\:f(x)=3x-x^{2}
limit as x approaches 1 of 1/(sqrt(x-2))
\lim\:_{x\to\:1}(\frac{1}{\sqrt{x-2}})
derivative of f(x)=9(5^x)
derivative\:f(x)=9(5^{x})
derivative of f(x)=cx^{-6}
derivative\:f(x)=cx^{-6}
inverse oflaplace 4/(s^2)
inverselaplace\:\frac{4}{s^{2}}
derivative of ln(e^{ax+b})
\frac{d}{dx}(\ln(e^{ax+b}))
integral of 8/(x^7)-6/(x^4)+3x
\int\:\frac{8}{x^{7}}-\frac{6}{x^{4}}+3xdx
derivative of y=0.4x^{1.2}
derivative\:y=0.4x^{1.2}
tangent of y=sqrt(x)(x-8),(16,32)
tangent\:y=\sqrt{x}(x-8),(16,32)
integral from 0 to 1 of sqrt(x^2-2x+1)
\int\:_{0}^{1}\sqrt{x^{2}-2x+1}dx
tangent of f(x)=sqrt(3x+1),(5,4)
tangent\:f(x)=\sqrt{3x+1},(5,4)
derivative of (x^2+1/(x-1))
\frac{d}{dx}(\frac{x^{2}+1}{x-1})
t^2y^{''}+2ty^'-6y=0
t^{2}y^{\prime\:\prime\:}+2ty^{\prime\:}-6y=0
integral of 1/(3+t)
\int\:\frac{1}{3+t}dt
y^'=3yx^2-3x^2
y^{\prime\:}=3yx^{2}-3x^{2}
limit as x approaches-3 of 2/(x^2)
\lim\:_{x\to\:-3}(\frac{2}{x^{2}})
integral of-64(1+4t)^{-3}
\int\:-64(1+4t)^{-3}dt
maclaurin e^x-e^{-x}
maclaurin\:e^{x}-e^{-x}
derivative of-2sin(2x)
derivative\:-2\sin(2x)
(dy)/(dx)=y(x^2+4)
\frac{dy}{dx}=y(x^{2}+4)
integral from 2 to 3 of (5x^{-1})
\int\:_{2}^{3}(5x^{-1})dx
xy^'+y=4xy^2
xy^{\prime\:}+y=4xy^{2}
derivative of x/(x^{-1+13})
\frac{d}{dx}(\frac{x}{x^{-1}+13})
derivative of 2^{50}
derivative\:2^{50}
(d^2)/(dx^2)(1/(x^2))
\frac{d^{2}}{dx^{2}}(\frac{1}{x^{2}})
integral of 3x^2(x^3+1)^{10}
\int\:3x^{2}(x^{3}+1)^{10}dx
limit as x approaches 4 of 9-x-5
\lim\:_{x\to\:4}(9-x-5)
(\partial)/(\partial x)(sqrt(1+x^2))
\frac{\partial\:}{\partial\:x}(\sqrt{1+x^{2}})
limit as x approaches 2pi of ln(cos(x))
\lim\:_{x\to\:2π}(\ln(\cos(x)))
derivative of 4xsin(x)
derivative\:4x\sin(x)
integral of 1/(sec(2x))
\int\:\frac{1}{\sec(2x)}dx
limit as x approaches 11+of sqrt(x-11)
\lim\:_{x\to\:11+}(\sqrt{x-11})
(dy)/(dx)=sin(2x)-1/2 sin(4x)
\frac{dy}{dx}=\sin(2x)-\frac{1}{2}\sin(4x)
tangent of f(x)=x(1-2x)^3,(1,-1)
tangent\:f(x)=x(1-2x)^{3},(1,-1)
(\partial)/(\partial w)(1/(2sqrt(v-w)))
\frac{\partial\:}{\partial\:w}(\frac{1}{2\sqrt{v-w}})
integral of cosh^3(x)
\int\:\cosh^{3}(x)dx
integral from-7 to 7 of sqrt(49-x^2)
\int\:_{-7}^{7}\sqrt{49-x^{2}}dx
(\partial)/(\partial x)(x^3sec^2(xy))
\frac{\partial\:}{\partial\:x}(x^{3}\sec^{2}(xy))
(\partial)/(\partial x)(13x+6xy^3)
\frac{\partial\:}{\partial\:x}(13x+6xy^{3})
(y^{11}x)(dy)/(dx)=1+x
(y^{11}x)\frac{dy}{dx}=1+x
d/(dt)(6sin(2t))
\frac{d}{dt}(6\sin(2t))
integral from-infinity to-1 of e^{-10t}
\int\:_{-\infty\:}^{-1}e^{-10t}dt
integral from 1 to infinity of x^{-7/4}
\int\:_{1}^{\infty\:}x^{-\frac{7}{4}}dx
derivative of-(3x^2/(2y))
\frac{d}{dx}(-\frac{3x^{2}}{2y})
maclaurin 1/(x^2+x+1)
maclaurin\:\frac{1}{x^{2}+x+1}
limit as x approaches 3 of 5x^3-3x^2+x-6
\lim\:_{x\to\:3}(5x^{3}-3x^{2}+x-6)
integral of e^{rt}
\int\:e^{rt}dt
integral of 2xe^{x^2+y^2}
\int\:2xe^{x^{2}+y^{2}}dx
limit as x approaches 2+of 1/(x-2)-1/(sqrt(x-2))
\lim\:_{x\to\:2+}(\frac{1}{x-2}-\frac{1}{\sqrt{x-2}})
integral of 1/(u(1-u))
\int\:\frac{1}{u(1-u)}du
area x^3+1,-x+1,y=0
area\:x^{3}+1,-x+1,y=0
limit as x approaches 1 of (x^2-x)/x
\lim\:_{x\to\:1}(\frac{x^{2}-x}{x})
integral of (-3sec^2(x))
\int\:(-3\sec^{2}(x))dx
(\partial)/(\partial y)(xsqrt(1+y^2))
\frac{\partial\:}{\partial\:y}(x\sqrt{1+y^{2}})
(\partial)/(\partial y)(sin(x)cos(7y))
\frac{\partial\:}{\partial\:y}(\sin(x)\cos(7y))
(\partial}{\partial u}(\frac{u-v)/2)
\frac{\partial\:}{\partial\:u}(\frac{u-v}{2})
(\partial)/(\partial x)(5x+y)
\frac{\partial\:}{\partial\:x}(5x+y)
integral of (7x^2)/(sqrt(1-x^6))
\int\:\frac{7x^{2}}{\sqrt{1-x^{6}}}dx
d/(d{y)}({y}{z})
\frac{d}{d{y}}({y}{z})
limit as x approaches 2 of-x^2+3
\lim\:_{x\to\:2}(-x^{2}+3)
derivative of 2+((-1^x)/x)
\frac{d}{dx}(2+\frac{(-1)^{x}}{x})
integral of 1/((x-4)ln(x-4))
\int\:\frac{1}{(x-4)\ln(x-4)}dx
y^{''}+2y^'-8y=0
y^{\prime\:\prime\:}+2y^{\prime\:}-8y=0
integral of (cos(x))/(6+sin(x))
\int\:\frac{\cos(x)}{6+\sin(x)}dx
inverse oflaplace 6/(s(s+4))
inverselaplace\:\frac{6}{s(s+4)}
derivative of ax^2+bx+c
\frac{d}{dx}(ax^{2}+bx+c)
(x^2+1)(dy)/(dx)+2xy=4x^2
(x^{2}+1)\frac{dy}{dx}+2xy=4x^{2}
1
..
234
235
236
237
238
..
2459