Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
y^'=(x^2-y^2)/(xy),y(2)=4
y^{\prime\:}=\frac{x^{2}-y^{2}}{xy},y(2)=4
derivative of 12xsin(x)
derivative\:12x\sin(x)
limit as x approaches 2 of (2x-1)^2-x^2
\lim\:_{x\to\:2}((2x-1)^{2}-x^{2})
integral from 0 to infinity of xe^{-x/4}
\int\:_{0}^{\infty\:}xe^{-\frac{x}{4}}dx
tangent of y=x^2,(-0.7,0.49)
tangent\:y=x^{2},(-0.7,0.49)
integral of (x-8)sin(pix)
\int\:(x-8)\sin(πx)dx
laplacetransform t^2-e^{-9t}+5
laplacetransform\:t^{2}-e^{-9t}+5
derivative of 1/(2x-1/(3x^2))
\frac{d}{dx}(\frac{1}{2x}-\frac{1}{3x^{2}})
integral of sin(x)sec^3(x)
\int\:\sin(x)\sec^{3}(x)dx
xy^2+3y^2-x^2(dy)/(dx)=0
xy^{2}+3y^{2}-x^{2}\frac{dy}{dx}=0
integral from 2 to sqrt(6 of)x
\int\:_{2}^{\sqrt{6}}xdx
derivative of ((x^2+3)/(x^2-3))^3
derivative\:(\frac{x^{2}+3}{x^{2}-3})^{3}
(\partial)/(\partial x)(x*e^{xy})
\frac{\partial\:}{\partial\:x}(x\cdot\:e^{xy})
area x=y^2-1,x=y
area\:x=y^{2}-1,x=y
derivative of x^3-6x^2+9x+1
\frac{d}{dx}(x^{3}-6x^{2}+9x+1)
derivative of 2x+x^2
\frac{d}{dx}(2x+x^{2})
integral of tan^2(8x)
\int\:\tan^{2}(8x)dx
derivative of y=(e^x)/(x-1)
derivative\:y=\frac{e^{x}}{x-1}
(dy)/(dx)=((e^{-y}+e^{-5x-y}))/(e^xy)
\frac{dy}{dx}=\frac{(e^{-y}+e^{-5x-y})}{e^{x}y}
limit as x approaches 1 of-9+3x^2
\lim\:_{x\to\:1}(-9+3x^{2})
integral of sqrt(t^2-t^4) 1
\int\:\sqrt{t^{2}-t^{4}}\frac{d}{1}dt
y^{'''}+2y^{''}+2y^'=0
y^{\prime\:\prime\:\prime\:}+2y^{\prime\:\prime\:}+2y^{\prime\:}=0
derivative of arctan(y/x)
derivative\:\arctan(\frac{y}{x})
(sin(t))^'
(\sin(t))^{\prime\:}
derivative of f(x)=4x^2-15
derivative\:f(x)=4x^{2}-15
e^{2x}y^'-4y=0
e^{2x}y^{\prime\:}-4y=0
derivative of x^{8/9}
\frac{d}{dx}(x^{\frac{8}{9}})
sum from n=1 to infinity of (x^n)/(4^n)
\sum\:_{n=1}^{\infty\:}\frac{x^{n}}{4^{n}}
integral of 2(cos(x))^{-1/2}sin(x)
\int\:2(\cos(x))^{-\frac{1}{2}}\sin(x)dx
(\partial)/(\partial x)((-x^2)/(y^2))
\frac{\partial\:}{\partial\:x}(\frac{-x^{2}}{y^{2}})
integral of (5x^2)/((x+1)(x^2+1))
\int\:\frac{5x^{2}}{(x+1)(x^{2}+1)}dx
integral of x^3(1-x^2)^{1/4}
\int\:x^{3}(1-x^{2})^{\frac{1}{4}}dx
(d^2)/(dx^2)(6sec(x))
\frac{d^{2}}{dx^{2}}(6\sec(x))
integral from 0 to 3pi of sin^2(x)
\int\:_{0}^{3π}\sin^{2}(x)dx
integral of x/(1+x^2)
\int\:\frac{x}{1+x^{2}}dx
y^{''}-4y^'+9y=0,y(0)=0,y^'(0)=-8
y^{\prime\:\prime\:}-4y^{\prime\:}+9y=0,y(0)=0,y^{\prime\:}(0)=-8
f(x)=(x^3)/9
f(x)=\frac{x^{3}}{9}
(dy)/(dx)-3y=-7sin(x)-7cos(x)
\frac{dy}{dx}-3y=-7\sin(x)-7\cos(x)
limit as x approaches+1 of |e^{x-1}-1|
\lim\:_{x\to\:+1}(\left|e^{x-1}-1\right|)
derivative of cos(x)+xsin(x)
derivative\:\cos(x)+x\sin(x)
(\partial)/(\partial x)(1/3 x^3y^3)
\frac{\partial\:}{\partial\:x}(\frac{1}{3}x^{3}y^{3})
integral from 8 to 9 of xsqrt(x-8)
\int\:_{8}^{9}x\sqrt{x-8}dx
area ((x-x^2)-(x^2-6x)),0,3.5
area\:((x-x^{2})-(x^{2}-6x)),0,3.5
tangent of f(x)=2sin(x)+6cos(x),\at x=0
tangent\:f(x)=2\sin(x)+6\cos(x),\at\:x=0
(\partial)/(\partial x)(x^8y^4-x^7y^3)
\frac{\partial\:}{\partial\:x}(x^{8}y^{4}-x^{7}y^{3})
derivative of 5(2xe^x+e^xx^2)
\frac{d}{dx}(5(2xe^{x}+e^{x}x^{2}))
integral from 1 to 4 of 10sqrt(t)ln(t)
\int\:_{1}^{4}10\sqrt{t}\ln(t)dt
(\partial)/(\partial x)(6y^2+478x-10)
\frac{\partial\:}{\partial\:x}(6y^{2}+478x-10)
derivative of-(2x/((4+x^2)^2))
\frac{d}{dx}(-\frac{2x}{(4+x^{2})^{2}})
integral of (x^2+x-3)/x
\int\:\frac{x^{2}+x-3}{x}dx
derivative of 2(x-2)
\frac{d}{dx}(2(x-2))
derivative of ((cos(x)/(1-sin(x)))^2)
\frac{d}{dx}((\frac{\cos(x)}{1-\sin(x)})^{2})
integral of 1/((1+2x))
\int\:\frac{1}{(1+2x)}dx
y^{''}-3y^'-10y=-4e^{4t},y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}-3y^{\prime\:}-10y=-4e^{4t},y(0)=0,y^{\prime\:}(0)=0
integral of 12e^{4x}
\int\:12e^{4x}dx
derivative of y=sqrt(x)+\sqrt[7]{x}
derivative\:y=\sqrt{x}+\sqrt[7]{x}
laplacetransform 10t^3e^{-2t}
laplacetransform\:10t^{3}e^{-2t}
area y= 1/2 x^3+2,y=x+1,0,2
area\:y=\frac{1}{2}x^{3}+2,y=x+1,0,2
tangent of f(x)=x^2+x,(-2,2)
tangent\:f(x)=x^{2}+x,(-2,2)
integral from 3 to 7 of 1/(sqrt(6x+7))
\int\:_{3}^{7}\frac{1}{\sqrt{6x+7}}dx
(\partial)/(\partial u)(v/(u-v))
\frac{\partial\:}{\partial\:u}(\frac{v}{u-v})
(dy)/(dx)=2sin(x)(y-3)
\frac{dy}{dx}=2\sin(x)(y-3)
derivative of 3/(2sqrt(3x+1))
\frac{d}{dx}(\frac{3}{2\sqrt{3x+1}})
limit as x approaches 0 of 4cos(2x)
\lim\:_{x\to\:0}(4\cos(2x))
y^{''}-y^'=6xe^x
y^{\prime\:\prime\:}-y^{\prime\:}=6xe^{x}
limit as x approaches 0 of x^3-3x^2+2x-3
\lim\:_{x\to\:0}(x^{3}-3x^{2}+2x-3)
2y^{''}-32y=0
2y^{\prime\:\prime\:}-32y=0
limit as x approaches 1 of (1-x)/(\sqrt[3]{8x^3-8)}
\lim\:_{x\to\:1}(\frac{1-x}{\sqrt[3]{8x^{3}-8}})
derivative of-12x^2
\frac{d}{dx}(-12x^{2})
integral of-4*sin(2x)+3*cos(3x)
\int\:-4\cdot\:\sin(2x)+3\cdot\:\cos(3x)dx
(d^2y)/(dx^2)=(dy)/(dx)
\frac{d^{2}y}{dx^{2}}=\frac{dy}{dx}
sum from n=1 to infinity}((-1)^{n-1 of)/(n!)
\sum\:_{n=1}^{\infty\:}\frac{(-1)^{n-1}}{n!}
derivative of (x^2-3x)/2
derivative\:\frac{x^{2}-3x}{2}
derivative of ln(x+sqrt(x^2+1))
derivative\:\ln(x+\sqrt{x^{2}+1})
limit as x approaches infinity of x/((ln(x))^3+2x)
\lim\:_{x\to\:\infty\:}(\frac{x}{(\ln(x))^{3}+2x})
2y(dy)/(dx)= x/(sqrt(x^2-16)),y(5)=2
2y\frac{dy}{dx}=\frac{x}{\sqrt{x^{2}-16}},y(5)=2
integral of sqrt(9x-36)
\int\:\sqrt{9x-36}dx
(dy)/(dx)=10e^{x-y}
\frac{dy}{dx}=10e^{x-y}
x^{''}=x
x^{\prime\:\prime\:}=x
derivative of sqrt(x^2-1)arcsec(x)
derivative\:\sqrt{x^{2}-1}\arcsec(x)
(\partial)/(\partial y)(2e^yx)
\frac{\partial\:}{\partial\:y}(2e^{y}x)
x^2y^'+2xy+1=0
x^{2}y^{\prime\:}+2xy+1=0
integral from-1 to 2 of e^x
\int\:_{-1}^{2}e^{x}dx
inverse oflaplace (3*s)/(5s^2+125)
inverselaplace\:\frac{3\cdot\:s}{5s^{2}+125}
y^'+2xy=10x
y^{\prime\:}+2xy=10x
integral of cos^{13}(x)sin(x)
\int\:\cos^{13}(x)\sin(x)dx
derivative of ((x+8/(x-8))^5)
\frac{d}{dx}((\frac{x+8}{x-8})^{5})
join 1+(a/(x^2))
join\:1+(\frac{a}{x^{2}})
limit as x approaches 0 of (f(x))/(x^2)
\lim\:_{x\to\:0}(\frac{f(x)}{x^{2}})
d/(dt)(e^{-t}(asin(t)+bcos(t)))
\frac{d}{dt}(e^{-t}(a\sin(t)+b\cos(t)))
integral from 0 to 6 of (4t)/((t-7)^2)
\int\:_{0}^{6}\frac{4t}{(t-7)^{2}}dt
laplacetransform e^{-2t}t^2
laplacetransform\:e^{-2t}t^{2}
limit as x approaches 0 of x^6e^{-x^5}
\lim\:_{x\to\:0}(x^{6}e^{-x^{5}})
integral from 1 to infinity of x^2ln(x)
\int\:_{1}^{\infty\:}x^{2}\ln(x)dx
(12y^2-x*y)dx+(x^2)dy=0
(12y^{2}-x\cdot\:y)dx+(x^{2})dy=0
integral of (-3x+4)*e^{-x}
\int\:(-3x+4)\cdot\:e^{-x}dx
derivative of (3x^2/(1+x^3))
\frac{d}{dx}(\frac{3x^{2}}{1+x^{3}})
integral of (x+7)/(sqrt(5-x))
\int\:\frac{x+7}{\sqrt{5-x}}dx
y^'=x^2y^3
y^{\prime\:}=x^{2}y^{3}
area y=sqrt(x+4),y=((x))/((2)+2)
area\:y=\sqrt{x+4},y=\frac{(x)}{(2)+2}
1
..
316
317
318
319
320
..
2459