Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of 3/(x^4)
\frac{d}{dx}(\frac{3}{x^{4}})
(\partial)/(\partial x)(sqrt(7-x^5-y^3))
\frac{\partial\:}{\partial\:x}(\sqrt{7-x^{5}-y^{3}})
(\partial)/(\partial u)(x^5v^2+2y^3u-3)
\frac{\partial\:}{\partial\:u}(x^{5}v^{2}+2y^{3}u-3)
(\partial)/(\partial x)(sqrt(61-x^2-3y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{61-x^{2}-3y^{2}})
integral from 2 to 5 of x^2
\int\:_{2}^{5}x^{2}dx
limit as x approaches 0+of 7sin(x)ln(x)
\lim\:_{x\to\:0+}(7\sin(x)\ln(x))
integral of sin(11x)ln(sin(11x))
\int\:\sin(11x)\ln(\sin(11x))dx
tangent of f(x)=x^3-2x+1,\at x=0
tangent\:f(x)=x^{3}-2x+1,\at\:x=0
expand 8/((1-x)^2)
expand\:\frac{8}{(1-x)^{2}}
integral of (3(x+2))/((x+7)^4)
\int\:\frac{3(x+2)}{(x+7)^{4}}dx
derivative of cos^2(pix)
\frac{d}{dx}(\cos^{2}(πx))
integral from 0 to 1 of-(5y)/(e^{2y)}
\int\:_{0}^{1}-\frac{5y}{e^{2y}}dy
area-x^3+x,x=-1,y=-1/2
area\:-x^{3}+x,x=-1,y=-\frac{1}{2}
integral of (5x+1)/(x^2+4x+5)
\int\:\frac{5x+1}{x^{2}+4x+5}dx
integral from 0 to 5 of 2/(x^2)
\int\:_{0}^{5}\frac{2}{x^{2}}dx
(dy)/(dt)=-y/t-7
\frac{dy}{dt}=-\frac{y}{t}-7
derivative of 2/((1-x^3))
\frac{d}{dx}(\frac{2}{(1-x)^{3}})
(\partial)/(\partial x)(z*log_{e}(x^2+y^2))
\frac{\partial\:}{\partial\:x}(z\cdot\:\log_{e}(x^{2}+y^{2}))
derivative of (6x^4-9x^2+8)^4
derivative\:(6x^{4}-9x^{2}+8)^{4}
limit as x approaches-1-of x^2+1
\lim\:_{x\to\:-1-}(x^{2}+1)
derivative of ln(e^{2x})
derivative\:\ln(e^{2x})
area y=(x+3)^2,(0,1)
area\:y=(x+3)^{2},(0,1)
derivative of cos(1-x^2)
\frac{d}{dx}(\cos(1-x^{2}))
integral of ((1+x+x^2)/(sqrt(x)))
\int\:(\frac{1+x+x^{2}}{\sqrt{x}})dx
derivative of f(x)=\sqrt[7]{t}-7e^t
derivative\:f(x)=\sqrt[7]{t}-7e^{t}
integral of 1/a
\int\:\frac{1}{a}da
simplify (4x^3+3x^2)/x
simplify\:\frac{4x^{3}+3x^{2}}{x}
derivative of f(t)=t^2+5
derivative\:f(t)=t^{2}+5
derivative of f(x)=(-3x^3-1)/(2x^2+1)
derivative\:f(x)=\frac{-3x^{3}-1}{2x^{2}+1}
derivative of xy-y^2
\frac{d}{dx}(xy-y^{2})
integral of (5x^3-4x+2)/(x^3-x^2)
\int\:\frac{5x^{3}-4x+2}{x^{3}-x^{2}}dx
x(dy)/(dx)+y=2x+1,y(1)=6
x\frac{dy}{dx}+y=2x+1,y(1)=6
limit as x approaches 1 of 3*a+x
\lim\:_{x\to\:1}(3\cdot\:a+x)
(\partial)/(\partial y)(10xzsin(y))
\frac{\partial\:}{\partial\:y}(10xz\sin(y))
integral of 1/((121+x^2)^{3/2)}
\int\:\frac{1}{(121+x^{2})^{\frac{3}{2}}}dx
y^'=7sqrt(x)y
y^{\prime\:}=7\sqrt{x}y
e^{0.75t}y^'+0.75ye^{0.75t}=-0.00003e^{0.75t}
e^{0.75t}y^{\prime\:}+0.75ye^{0.75t}=-0.00003e^{0.75t}
derivative of f(x)=-3cos(x)+2sin(x)
derivative\:f(x)=-3\cos(x)+2\sin(x)
(\partial)/(\partial x)(7x^6y^4+8x^5y^7)
\frac{\partial\:}{\partial\:x}(7x^{6}y^{4}+8x^{5}y^{7})
integral of ((2x^2-x+4))/(x^3+4x)
\int\:\frac{(2x^{2}-x+4)}{x^{3}+4x}dx
limit as x approaches 2 of (x^3+x^2-8x-12)/(x^4+4x^3+5x^2+4x+4)
\lim\:_{x\to\:2}(\frac{x^{3}+x^{2}-8x-12}{x^{4}+4x^{3}+5x^{2}+4x+4})
(\partial)/(\partial x)(z^3-xy+yz+y^3-2)
\frac{\partial\:}{\partial\:x}(z^{3}-xy+yz+y^{3}-2)
inverse oflaplace 4/([s(s^2+4)])
inverselaplace\:\frac{4}{[s(s^{2}+4)]}
y^'=((t^4+y^4))/(ty^3)
y^{\prime\:}=\frac{(t^{4}+y^{4})}{ty^{3}}
integral of (3-x)/(x^2-1)
\int\:\frac{3-x}{x^{2}-1}dx
limit as x approaches-1-of (x-2)/(x^2-1)
\lim\:_{x\to\:-1-}(\frac{x-2}{x^{2}-1})
limit as x approaches+0 of x
\lim\:_{x\to\:+0}(x)
laplacetransform e^{2x}
laplacetransform\:e^{2x}
integral of (2x+3)^4
\int\:(2x+3)^{4}dx
integral of e^{uv}
\int\:e^{uv}du
derivative of 4x^5-10x^4+2
\frac{d}{dx}(4x^{5}-10x^{4}+2)
derivative of (x^2+x+4/(x+1))
\frac{d}{dx}(\frac{x^{2}+x+4}{x+1})
integral of (x^5-3x)/(x^4)
\int\:\frac{x^{5}-3x}{x^{4}}dx
integral of 4y+2x-5
\int\:4y+2x-5dx
area y=x^2+1,x=0,x=6
area\:y=x^{2}+1,x=0,x=6
integral of-4sin(2x)+3
\int\:-4\sin(2x)+3dx
derivative of (6x-1/(4x+5))
\frac{d}{dx}(\frac{6x-1}{4x+5})
integral of 1/(sqrt(2x+3))
\int\:\frac{1}{\sqrt{2x+3}}dx
derivative of (1/2 x^2-3^2)
\frac{d}{dx}((\frac{1}{2}x^{2}-3)^{2})
x^2(dy)/(dx)=(x+1)y
x^{2}\frac{dy}{dx}=(x+1)y
area y=xe^{-x},y=0,x=4
area\:y=xe^{-x},y=0,x=4
limit as x approaches+1 of (x^2-9)^{1/3}
\lim\:_{x\to\:+1}((x^{2}-9)^{\frac{1}{3}})
(d^2}{dx^2}(\frac{ln(x))/x)
\frac{d^{2}}{dx^{2}}(\frac{\ln(x)}{x})
derivative of 2+e^x
\frac{d}{dx}(2+e^{x})
(dy)/(dt)=((te^t))/(ysqrt(1+y^2))
\frac{dy}{dt}=\frac{(te^{t})}{y\sqrt{1+y^{2}}}
integral of (e^{3x})/(9+e^{6x)}
\int\:\frac{e^{3x}}{9+e^{6x}}dx
limit as x approaches 3 of 10^{x^2-4x}
\lim\:_{x\to\:3}(10^{x^{2}-4x})
integral of sin(t)+cos(t)
\int\:\sin(t)+\cos(t)dt
15x^2-4y^'=0
15x^{2}-4y^{\prime\:}=0
(\partial)/(\partial x)(y/(h^2x))
\frac{\partial\:}{\partial\:x}(\frac{y}{h^{2}x})
y^'=2y(1-3y)
y^{\prime\:}=2y(1-3y)
ty^'-y=0
ty^{\prime\:}-y=0
area ln(x),y=2,1,e^2
area\:\ln(x),y=2,1,e^{2}
derivative of 3sqrt(4-x)
\frac{d}{dx}(3\sqrt{4-x})
(dr)/(dt)=-4rt
\frac{dr}{dt}=-4rt
derivative of 6pir^2
derivative\:6πr^{2}
integral of 1/((x^2+2))
\int\:\frac{1}{(x^{2}+2)}dx
integral of (-3x^3+2x^2-28x+10)/(x^2+9)
\int\:\frac{-3x^{3}+2x^{2}-28x+10}{x^{2}+9}dx
derivative of y^2-x
\frac{d}{dx}(y^{2}-x)
integral of x^4(x^5-5)^3
\int\:x^{4}(x^{5}-5)^{3}dx
derivative of f(x)=log_{e}(x)
derivative\:f(x)=\log_{e}(x)
integral of (x^2)/(x^2-1)
\int\:\frac{x^{2}}{x^{2}-1}dx
(\partial)/(\partial x)(x^{2/3}y^{1/3})
\frac{\partial\:}{\partial\:x}(x^{\frac{2}{3}}y^{\frac{1}{3}})
derivative of (1+x^2^2)
\frac{d}{dx}((1+x^{2})^{2})
derivative of (2x^4-6x^2+5^2)
\frac{d}{dx}((2x^{4}-6x^{2}+5)^{2})
-y+y^'-y=e^xcos(x)
-y+y^{\prime\:}-y=e^{x}\cos(x)
implicit (d^2y)/(dx^2),xy+7ey(x)=7e
implicit\:\frac{d^{2}y}{dx^{2}},xy+7ey(x)=7e
derivative of f(x)=tan(x)-1sec(x)
derivative\:f(x)=\tan(x)-1\sec(x)
derivative of f(x)=\sqrt[3]{x+2}
derivative\:f(x)=\sqrt[3]{x+2}
(\partial)/(\partial x)(ln(13x^2-10y^2))
\frac{\partial\:}{\partial\:x}(\ln(13x^{2}-10y^{2}))
(\partial)/(\partial x)(x^2y^3sin(x-2y))
\frac{\partial\:}{\partial\:x}(x^{2}y^{3}\sin(x-2y))
derivative of (2xcos(x^2)/(sin(x^2)+1))
\frac{d}{dx}(\frac{2x\cos(x^{2})}{\sin(x^{2})+1})
integral of x/(sqrt(a^2-x^2))
\int\:\frac{x}{\sqrt{a^{2}-x^{2}}}dx
limit as x approaches 25 of sqrt(x)
\lim\:_{x\to\:25}(\sqrt{x})
derivative of f(x)=7e^x
derivative\:f(x)=7e^{x}
integral of x/(x^2-16)
\int\:\frac{x}{x^{2}-16}dx
derivative of-8/x
derivative\:-\frac{8}{x}
(x+y)(dy)/(dx)=1
(x+y)\frac{dy}{dx}=1
sum from n=1 to infinity of n^{-1}
\sum\:_{n=1}^{\infty\:}n^{-1}
area-x^2+9,-2x^2+18
area\:-x^{2}+9,-2x^{2}+18
1
..
350
351
352
353
354
..
2459