Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 4-of 3(x)-5
\lim\:_{x\to\:4-}(3(x)-5)
derivative of (8e^x+5e^{-x}/8)
\frac{d}{dx}(\frac{8e^{x}+5e^{-x}}{8})
derivative of f(x)=sqrt(10-5x)
derivative\:f(x)=\sqrt{10-5x}
integral of (4x^5+2x^3+x-1)/(x^2)
\int\:\frac{4x^{5}+2x^{3}+x-1}{x^{2}}dx
integral of (1/(x^9)-x^9-1/2)
\int\:(\frac{1}{x^{9}}-x^{9}-\frac{1}{2})dx
integral of (x^3+2x^2-3x+4)
\int\:(x^{3}+2x^{2}-3x+4)dx
integral of xe^{-x/6}
\int\:xe^{-\frac{x}{6}}dx
derivative of (2x-5^{1/2})
\frac{d}{dx}((2x-5)^{\frac{1}{2}})
integral of y^2e^{-2y}
\int\:y^{2}e^{-2y}dy
derivative of f(x)=xe^{1/x}
derivative\:f(x)=xe^{\frac{1}{x}}
area-cos(x),[0,pi]
area\:-\cos(x),[0,π]
(\partial)/(\partial x)(2y+xe^y)
\frac{\partial\:}{\partial\:x}(2y+xe^{y})
(dy)/(dt)=0.06y-4000
\frac{dy}{dt}=0.06y-4000
tangent of 5x^2+2x-3
tangent\:5x^{2}+2x-3
y^'=(x^2*e^{(y/x)}+y^2)/(x*y)
y^{\prime\:}=\frac{x^{2}\cdot\:e^{(\frac{y}{x})}+y^{2}}{x\cdot\:y}
limit as x approaches 2 of x^2-4x+4
\lim\:_{x\to\:2}(x^{2}-4x+4)
y^{''}+10y^'+25y=0,y(1)=0,y^'(1)=1
y^{\prime\:\prime\:}+10y^{\prime\:}+25y=0,y(1)=0,y^{\prime\:}(1)=1
limit as x approaches 1 of-1.6x+0.6
\lim\:_{x\to\:1}(-1.6x+0.6)
integral of 1/(xln(3x))
\int\:\frac{1}{x\ln(3x)}dx
derivative of sqrt((ln(x+1)/(ln(x)-1)))
\frac{d}{dx}(\sqrt{\frac{\ln(x)+1}{\ln(x)-1}})
limit as x approaches-2 of (2-|x|)/(2+x)
\lim\:_{x\to\:-2}(\frac{2-\left|x\right|}{2+x})
y^'=2xy+xy^2
y^{\prime\:}=2xy+xy^{2}
laplacetransform 2cos(t)-2
laplacetransform\:2\cos(t)-2
derivative of ((6x^2+8x+8)/(sqrt(x)))
\frac{d}{dx}(\frac{(6x^{2}+8x+8)}{\sqrt{x}})
integral from 11 to 12.5 of 3e^{-3x}
\int\:_{11}^{12.5}3e^{-3x}dx
limit as x approaches infinity of 2x^5
\lim\:_{x\to\:\infty\:}(2x^{5})
limit as x approaches 0+of x^8ln(x)
\lim\:_{x\to\:0+}(x^{8}\ln(x))
integral of e^{-sxy}
\int\:e^{-sxy}dx
integral from 0 to 1 of 2pi(2-y)(5-5y^2)
\int\:_{0}^{1}2π(2-y)(5-5y^{2})dy
integral from 0 to 4 of 0.125x^2
\int\:_{0}^{4}0.125x^{2}dx
y^{''}+4y=sin(x)
y^{\prime\:\prime\:}+4y=\sin(x)
derivative of (2x^2+1)/(x^2+8)
derivative\:\frac{2x^{2}+1}{x^{2}+8}
integral from 0 to 1 of ln(x^2+1)
\int\:_{0}^{1}\ln(x^{2}+1)dx
integral of 1/(x^2+x+1)
\int\:\frac{1}{x^{2}+x+1}dx
derivative of-(3(z^2+1))/(z^2)
derivative\:-\frac{3(z^{2}+1)}{z^{2}}
area y^2=6-x,3y=x+12
area\:y^{2}=6-x,3y=x+12
integral from pi to 2pi of 9xsin(x)
\int\:_{π}^{2π}9x\sin(x)dx
sum from n=0 to infinity of 12*626582
\sum\:_{n=0}^{\infty\:}12\cdot\:626582
integral of (2+e^x)/(e^x)
\int\:\frac{2+e^{x}}{e^{x}}dx
sum from n=1 to infinity of 7/(2^{n-1)}
\sum\:_{n=1}^{\infty\:}\frac{7}{2^{n-1}}
integral of (16)/(sec(2x)-1)
\int\:\frac{16}{\sec(2x)-1}dx
derivative of 2e^{2x}+3e^{3x}
\frac{d}{dx}(2e^{2x}+3e^{3x})
limit as x approaches a of [f(x)]^{g(x)}
\lim\:_{x\to\:a}([f(x)]^{g(x)})
limit as t approaches 0 of 3/t-3/(e^t-1)
\lim\:_{t\to\:0}(\frac{3}{t}-\frac{3}{e^{t}-1})
y^'+y=te^{-t}+1
y^{\prime\:}+y=te^{-t}+1
integral of 1/12
\int\:\frac{1}{12}dx
limit as x approaches+0+of 1/x-1/(x^2)
\lim\:_{x\to\:+0+}(\frac{1}{x}-\frac{1}{x^{2}})
(\partial)/(\partial x)(2e^{x-3y})
\frac{\partial\:}{\partial\:x}(2e^{x-3y})
derivative of sqrt(x^4+y^4)
derivative\:\sqrt{x^{4}+y^{4}}
integral of (sin(x))/4
\int\:\frac{\sin(x)}{4}dx
tangent of f(x)=sqrt(14-x),\at x=5
tangent\:f(x)=\sqrt{14-x},\at\:x=5
(\partial)/(\partial x)(1/x+1/y)
\frac{\partial\:}{\partial\:x}(\frac{1}{x}+\frac{1}{y})
derivative of (4-x^{2/3}^{3/2})
\frac{d}{dx}((4-x^{\frac{2}{3}})^{\frac{3}{2}})
maclaurin e^{-3x^2}
maclaurin\:e^{-3x^{2}}
integral of 1/(4t)
\int\:\frac{1}{4t}dt
limit as x approaches 6 of f(x)-g(x)
\lim\:_{x\to\:6}(f(x)-g(x))
(d^2)/(dx^2)(6cos(3x+3))
\frac{d^{2}}{dx^{2}}(6\cos(3x+3))
inverse oflaplace 1/(s^2-4)
inverselaplace\:\frac{1}{s^{2}-4}
(xsin(2pix))^'
(x\sin(2πx))^{\prime\:}
integral from 0 to 1 of pi(x-x^4)^2
\int\:_{0}^{1}π(x-x^{4})^{2}dx
laplacetransform e^{t+7}
laplacetransform\:e^{t+7}
integral of 5xsqrt(1-x^4)
\int\:5x\sqrt{1-x^{4}}dx
derivative of x(x^2+4)^5
derivative\:x(x^{2}+4)^{5}
derivative of f(x)=5x+2x^2+7e^x
derivative\:f(x)=5x+2x^{2}+7e^{x}
area y=-x^2+1,y=0
area\:y=-x^{2}+1,y=0
integral from 0 to pi of 1/(sqrt(pi-x))
\int\:_{0}^{π}\frac{1}{\sqrt{π-x}}dx
limit as x approaches-5/2 of-x+2
\lim\:_{x\to\:-\frac{5}{2}}(-x+2)
derivative of cos(x-1)
\frac{d}{dx}(\cos(x)-1)
integral of 3/(\sqrt[4]{x^5)}
\int\:\frac{3}{\sqrt[4]{x^{5}}}dx
limit as x approaches 3 of x^2+2x-10
\lim\:_{x\to\:3}(x^{2}+2x-10)
y^{''}+17y=0
y^{\prime\:\prime\:}+17y=0
integral of (x^7)/(1+x^{16)}
\int\:\frac{x^{7}}{1+x^{16}}dx
(sin(y))^'
(\sin(y))^{\prime\:}
normal of y=(sqrt(x))/(x+4),(1,0.2)
normal\:y=\frac{\sqrt{x}}{x+4},(1,0.2)
area y= 1/x ,y=x,y= 1/4 x
area\:y=\frac{1}{x},y=x,y=\frac{1}{4}x
integral of x*arcsin(x)
\int\:x\cdot\:\arcsin(x)dx
expand (x^2+x^3)^4
expand\:(x^{2}+x^{3})^{4}
integral of t/((t^2+1)^{7/2)}
\int\:\frac{t}{(t^{2}+1)^{\frac{7}{2}}}dt
area y=2x^2-1,(0,3)
area\:y=2x^{2}-1,(0,3)
y^{''}+4y^'+4y=4e^{-2t}
y^{\prime\:\prime\:}+4y^{\prime\:}+4y=4e^{-2t}
integral of ((x-3))/((x+4)(x-5))
\int\:\frac{(x-3)}{(x+4)(x-5)}dx
derivative of x^3-5x^2+7x-3
\frac{d}{dx}(x^{3}-5x^{2}+7x-3)
(\partial)/(\partial x)(x^2y-1/(xy))
\frac{\partial\:}{\partial\:x}(x^{2}y-\frac{1}{xy})
derivative of arccot(sqrt(x))
\frac{d}{dx}(\arccot(\sqrt{x}))
f(x)=x^2sqrt(9-x^2)
f(x)=x^{2}\sqrt{9-x^{2}}
derivative of-1/((1+t)^2)
derivative\:-\frac{1}{(1+t)^{2}}
6y^{''}-y^'-y=0
6y^{\prime\:\prime\:}-y^{\prime\:}-y=0
derivative of 5x^3y^4
\frac{d}{dx}(5x^{3}y^{4})
((dy)/(dx))^2+2e^x(dy)/(dx)+e^{2x}=0
(\frac{dy}{dx})^{2}+2e^{x}\frac{dy}{dx}+e^{2x}=0
derivative of 11-x^2
derivative\:11-x^{2}
integral of (x^2)/((9-x^2)^{3/2)}
\int\:\frac{x^{2}}{(9-x^{2})^{\frac{3}{2}}}dx
integral from 1 to 1000 of (37)/(x^3)
\int\:_{1}^{1000}\frac{37}{x^{3}}dx
derivative of (1/(y^2)-3/(y^4))(y+7y^3)
derivative\:(\frac{1}{y^{2}}-\frac{3}{y^{4}})(y+7y^{3})
(\partial)/(\partial x)(2xe^{2xy})
\frac{\partial\:}{\partial\:x}(2xe^{2xy})
limit as x approaches+7 of x/(x+7)
\lim\:_{x\to\:+7}(\frac{x}{x+7})
(\partial)/(\partial x)((xe^y)/(3z^2+1))
\frac{\partial\:}{\partial\:x}(\frac{xe^{y}}{3z^{2}+1})
derivative of \sqrt[3]{t^2}-5sqrt(t^3)
derivative\:\sqrt[3]{t^{2}}-5\sqrt{t^{3}}
(dy)/(dx)+3xy^3=0,y(0)=1
\frac{dy}{dx}+3xy^{3}=0,y(0)=1
integral of (5e^{2x}-e^x)/(e^{2x)-1}
\int\:\frac{5e^{2x}-e^{x}}{e^{2x}-1}dx
(\partial)/(\partial x)(9x^2y^2)
\frac{\partial\:}{\partial\:x}(9x^{2}y^{2})
1
..
458
459
460
461
462
..
2459