Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
area y=x^3,y=1,x=2
area\:y=x^{3},y=1,x=2
sum from n=0 to infinity of (3^n)/(4^n)
\sum\:_{n=0}^{\infty\:}\frac{3^{n}}{4^{n}}
sum from n=1 to infinity of (2n+1)/(n^4)
\sum\:_{n=1}^{\infty\:}\frac{2n+1}{n^{4}}
integral from 1 to infinity of (1/(x^2))
\int\:_{1}^{\infty\:}(\frac{1}{x^{2}})dx
limit as x approaches infinity of f(x)(x)^2
\lim\:_{x\to\:\infty\:}(f(x)(x)^{2})
limit as x approaches-infinity of x^2-1
\lim\:_{x\to\:-\infty\:}(x^{2}-1)
derivative of (x^2+1)(x^2-2x)
derivative\:(x^{2}+1)(x^{2}-2x)
f(x)=(cos(x))/(1-sin(x))
f(x)=\frac{\cos(x)}{1-\sin(x)}
integral of 1/(sqrt(x))+sec^2(x)
\int\:\frac{1}{\sqrt{x}}+\sec^{2}(x)dx
expand (x+a)e^{2x}+b
expand\:(x+a)e^{2x}+b
(\partial)/(\partial y)(6xy-2+10x^2y)
\frac{\partial\:}{\partial\:y}(6xy-2+10x^{2}y)
derivative of ln(sin^3(x^2+7))
\frac{d}{dx}(\ln(\sin^{3}(x^{2}+7)))
y=tan^2(x)
y=\tan^{2}(x)
tangent of y^3+xy^2-61=x+3y^2,\at x=3
tangent\:y^{3}+xy^{2}-61=x+3y^{2},\at\:x=3
integral of (x^2)/(sqrt(2-x))
\int\:\frac{x^{2}}{\sqrt{2-x}}dx
derivative of 2sqrt(1+x^2)
\frac{d}{dx}(2\sqrt{1+x^{2}})
integral of cot(10x)csc^4(10z)
\int\:\cot(10x)\csc^{4}(10z)
implicit xy^2+4xy-4=0
implicit\:xy^{2}+4xy-4=0
integral of x^3-4x^{-2}+5
\int\:x^{3}-4x^{-2}+5dx
integral from 8 to 24 of (x+1/x)
\int\:_{8}^{24}(x+\frac{1}{x})dx
derivative of (4sqrt(t^3))/3+6
derivative\:\frac{4\sqrt{t^{3}}}{3}+6
f(x)=(x^2+1)(x^3-x)(3x^4+2x-1)
f(x)=(x^{2}+1)(x^{3}-x)(3x^{4}+2x-1)
limit as x approaches 0 of ln((-1)/6 x)
\lim\:_{x\to\:0}(\ln(\frac{-1}{6}x))
integral of 5/(3xsqrt(x^2-25))
\int\:\frac{5}{3x\sqrt{x^{2}-25}}dx
integral of (x^2)/(x^4-1)
\int\:\frac{x^{2}}{x^{4}-1}dx
integral of 3/(sqrt(x^3))
\int\:\frac{3}{\sqrt{x^{3}}}dx
integral from-3 to 5 of (y^3-4y)
\int\:_{-3}^{5}(y^{3}-4y)dy
integral from 0 to 2 of 3
\int\:_{0}^{2}3dx
integral from-infinity to 0 of e^{4x}
\int\:_{-\infty\:}^{0}e^{4x}dx
limit as x approaches 0 of e^{3x}
\lim\:_{x\to\:0}(e^{3x})
integral of sqrt((arcsin(x))/(1-x^2))
\int\:\sqrt{\frac{\arcsin(x)}{1-x^{2}}}dx
limit as x approaches 4 of (|x-4|)/(x-4)
\lim\:_{x\to\:4}(\frac{\left|x-4\right|}{x-4})
integral of e^{-st-t}
\int\:e^{-st-t}dt
derivative of cos(xx^3)
\frac{d}{dx}(\cos(x)x^{3})
integral of (2x+9)^5
\int\:(2x+9)^{5}dx
tangent of f(x)=(4x^2)/(x+3),(1,1)
tangent\:f(x)=\frac{4x^{2}}{x+3},(1,1)
tangent of y=(sqrt(x))/(x+1),(4,0.4)
tangent\:y=\frac{\sqrt{x}}{x+1},(4,0.4)
y^{''}+4y=5csc^2(2t)
y^{\prime\:\prime\:}+4y=5\csc^{2}(2t)
(\partial)/(\partial z)(ysin(z))
\frac{\partial\:}{\partial\:z}(y\sin(z))
derivative of (tan(x)-5)/(sec(x))
derivative\:\frac{\tan(x)-5}{\sec(x)}
integral of sin(3y)
\int\:\sin(3y)dy
derivative of f(x)= 4/(x^4)+10sqrt(x)
derivative\:f(x)=\frac{4}{x^{4}}+10\sqrt{x}
integral of t^2e^{-t/4}
\int\:t^{2}e^{-\frac{t}{4}}dt
integral from-infinity to-1 of e^{-18t}
\int\:_{-\infty\:}^{-1}e^{-18t}dt
derivative of (x-2^2(x-3)^3)
\frac{d}{dx}((x-2)^{2}(x-3)^{3})
integral of 3xsec^2(x)
\int\:3x\sec^{2}(x)dx
integral of (sin^2(x))/(cos^6(x))
\int\:\frac{\sin^{2}(x)}{\cos^{6}(x)}dx
integral of xlog_{10}(x)
\int\:x\log_{10}(x)dx
limit as x approaches pi/4 of sin(x)
\lim\:_{x\to\:\frac{π}{4}}(\sin(x))
f(x)= x/(3x+4ln(x))
f(x)=\frac{x}{3x+4\ln(x)}
implicit (dy)/(dx),y^2=4x
implicit\:\frac{dy}{dx},y^{2}=4x
(\partial)/(\partial y)(xy-y^2)
\frac{\partial\:}{\partial\:y}(xy-y^{2})
(d^2)/(dx^2)((x^2)/(7+6x))
\frac{d^{2}}{dx^{2}}(\frac{x^{2}}{7+6x})
integral of sin(5x)cos^{4/3}(5x)
\int\:\sin(5x)\cos^{\frac{4}{3}}(5x)dx
(\partial)/(\partial x)(e^xxy)
\frac{\partial\:}{\partial\:x}(e^{x}xy)
(dy)/(dx)=(xy+7x-y-7)/(xy-2x+8y-16)
\frac{dy}{dx}=\frac{xy+7x-y-7}{xy-2x+8y-16}
(\partial)/(\partial x)(3x^2y^2+3)
\frac{\partial\:}{\partial\:x}(3x^{2}y^{2}+3)
integral of x/((x^2-1)^{3/2)}
\int\:\frac{x}{(x^{2}-1)^{\frac{3}{2}}}dx
derivative of 1/(e^{-2x})
\frac{d}{dx}(\frac{1}{e^{-2x}})
taylor ((e^x-e^{-x}))/2
taylor\:\frac{(e^{x}-e^{-x})}{2}
integral of picos(pi)x
\int\:π\cos(π)xdx
integral of (x^5-6x)
\int\:(x^{5}-6x)dx
y^{''}-10y^'+25y=t^{-5}e^{5t}
y^{\prime\:\prime\:}-10y^{\prime\:}+25y=t^{-5}e^{5t}
derivative of x/(x^2-4)
derivative\:\frac{x}{x^{2}-4}
d/(dθ)(1/(2cos(θ)+3sin(θ)))
\frac{d}{dθ}(\frac{1}{2\cos(θ)+3\sin(θ)})
derivative of sin(sin(2x))
\frac{d}{dx}(\sin(\sin(2x)))
integral of-2
\int\:-2dx
integral of (3x^5-5x+6)
\int\:(3x^{5}-5x+6)dx
inverse oflaplace (s+1)/(s^2(s^2+1))
inverselaplace\:\frac{s+1}{s^{2}(s^{2}+1)}
limit as x approaches 1 of (|x-1|)/(x-1)
\lim\:_{x\to\:1}(\frac{\left|x-1\right|}{x-1})
(dy)/(dx)=136x-xy
\frac{dy}{dx}=136x-xy
(dy)/(dx)=(2x)/(1+2y)
\frac{dy}{dx}=\frac{2x}{1+2y}
x^{''}-3x^'-10x=20t
x^{\prime\:\prime\:}-3x^{\prime\:}-10x=20t
(1-x)y^{''}+xy^'-y=(x-1)^2e^{-x}
(1-x)y^{\prime\:\prime\:}+xy^{\prime\:}-y=(x-1)^{2}e^{-x}
integral from 1 to infinity of x^{-1/9}
\int\:_{1}^{\infty\:}x^{-\frac{1}{9}}dx
inverse oflaplace 2/(s(s+2)+2)
inverselaplace\:\frac{2}{s(s+2)+2}
derivative of y= 23/5 x-12
derivative\:y=\frac{23}{5}x-12
derivative of f(x)=\sqrt[8]{x}
derivative\:f(x)=\sqrt[8]{x}
derivative of-5e^{-5x}
\frac{d}{dx}(-5e^{-5x})
tangent of f(x)= 1/(x^6),(1,1)
tangent\:f(x)=\frac{1}{x^{6}},(1,1)
derivative of 1/(4x^3-5/(2x))
\frac{d}{dx}(\frac{1}{4x^{3}}-\frac{5}{2x})
(\partial)/(\partial x)(x^2+(y-1)^2+z^2)
\frac{\partial\:}{\partial\:x}(x^{2}+(y-1)^{2}+z^{2})
area x,x^{2.42},[0.99,1]
area\:x,x^{2.42},[0.99,1]
derivative of (2x/(x+8))
\frac{d}{dx}(\frac{2x}{x+8})
derivative of y=5csc(x)+6cos(x)
derivative\:y=5\csc(x)+6\cos(x)
area y=sin(x),y=5x,x= pi/2 ,x=pi
area\:y=\sin(x),y=5x,x=\frac{π}{2},x=π
integral of 1/(2sqrt(x+3)+x)
\int\:\frac{1}{2\sqrt{x+3}+x}dx
xdy+(y-3xy)dx=0
xdy+(y-3xy)dx=0
sum from n=1 to infinity of (ln(n))/(5n)
\sum\:_{n=1}^{\infty\:}\frac{\ln(n)}{5n}
(\partial)/(\partial x)(\sqrt[3]{1/x})
\frac{\partial\:}{\partial\:x}(\sqrt[3]{\frac{1}{x}})
limit as x approaches 1 of-cos(1/(x-1))
\lim\:_{x\to\:1}(-\cos(\frac{1}{x-1}))
(\partial)/(\partial x)(6e^xcos(yz))
\frac{\partial\:}{\partial\:x}(6e^{x}\cos(yz))
derivative of 5+sin(45)
\frac{d}{dx}(5+\sin(45))
limit as x approaches 0+of (x^2)/5-7/x
\lim\:_{x\to\:0+}(\frac{x^{2}}{5}-\frac{7}{x})
limit as x approaches infinity of (log_{2}(x))/(\sqrt[3]{x)}
\lim\:_{x\to\:\infty\:}(\frac{\log_{2}(x)}{\sqrt[3]{x}})
limit as x approaches 0 of 2+5/(x^2)
\lim\:_{x\to\:0}(2+\frac{5}{x^{2}})
derivative of y=((8x^2)/(2-x))^3
derivative\:y=(\frac{8x^{2}}{2-x})^{3}
area cos(x),sin(x),[0, pi/2 ]
area\:\cos(x),\sin(x),[0,\frac{π}{2}]
integral of x^5sqrt(9x^2-1)
\int\:x^{5}\sqrt{9x^{2}-1}dx
(\partial)/(\partial y)(3x^2y+cos(y))
\frac{\partial\:}{\partial\:y}(3x^{2}y+\cos(y))
1
..
669
670
671
672
673
..
2459