Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of e^{-x}cos(x-e^{-x}sin(x))
\frac{d}{dx}(e^{-x}\cos(x)-e^{-x}\sin(x))
(dy)/(dx)+3y=x^2
\frac{dy}{dx}+3y=x^{2}
integral of (tan^3(θ))/(cos^2(θ))
\int\:\frac{\tan^{3}(θ)}{\cos^{2}(θ)}dθ
tangent of f(x)=x^2-3x+2,\at x=1
tangent\:f(x)=x^{2}-3x+2,\at\:x=1
derivative of (x+9)(9sqrt(x)+7)
derivative\:(x+9)(9\sqrt{x}+7)
integral of xsqrt(7-x^2)
\int\:x\sqrt{7-x^{2}}dx
(\partial)/(\partial x)((2x+y)/((x+2y)^2))
\frac{\partial\:}{\partial\:x}(\frac{2x+y}{(x+2y)^{2}})
f(x)=cos(7x)
f(x)=\cos(7x)
expand (x^2)/(5(1-x))
expand\:\frac{x^{2}}{5(1-x)}
derivative of cos(xt)
\frac{d}{dx}(\cos(xt))
limit as x approaches 0.5 of f(x)
\lim\:_{x\to\:0.5}(f(x))
integral from 1 to 5 of 2/(x^3)
\int\:_{1}^{5}\frac{2}{x^{3}}dx
derivative of arctan(sqrt(x-1))
\frac{d}{dx}(\arctan(\sqrt{x-1}))
derivative of 5/(sqrt(e^x+x))
\frac{d}{dx}(\frac{5}{\sqrt{e^{x}+x}})
limit as x approaches 1+of (x-3)^2
\lim\:_{x\to\:1+}((x-3)^{2})
y^{''}-4y^'+29y=0
y^{\prime\:\prime\:}-4y^{\prime\:}+29y=0
derivative of (2e^x-x^5/(1-3x^5))
\frac{d}{dx}(\frac{2e^{x}-x^{5}}{1-3x^{5}})
derivative of xe^{xy+1}
\frac{d}{dx}(xe^{xy+1})
tangent of f(x)=x^2-3x+2,\at x=2
tangent\:f(x)=x^{2}-3x+2,\at\:x=2
integral of (2x-3)/6
\int\:\frac{2x-3}{6}dx
derivative of ln(x^2)
derivative\:\ln(x^{2})
inverse oflaplace 1/((s+3))
inverselaplace\:\frac{1}{(s+3)}
integral of 1/((2x-3)*(3x^2+x))
\int\:\frac{1}{(2x-3)\cdot\:(3x^{2}+x)}dx
derivative of (x^2/(x^4))
\frac{d}{dx}(\frac{x^{2}}{x^{4}})
derivative of 1/(sqrt(1-x))
\frac{d}{dx}(\frac{1}{\sqrt{1-x}})
integral of coth^2(x)
\int\:\coth^{2}(x)dx
derivative of arccot(x)
derivative\:\arccot(x)
taylor 1/((x^2+4)^3)
taylor\:\frac{1}{(x^{2}+4)^{3}}
limit as x approaches 10 of 5
\lim\:_{x\to\:10}(5)
y^{''}-11y^'+24y=e^{-4t}
y^{\prime\:\prime\:}-11y^{\prime\:}+24y=e^{-4t}
derivative of (4x-3^{1/3})
\frac{d}{dx}((4x-3)^{\frac{1}{3}})
(\partial)/(\partial x)(1/((1+x)^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{(1+x)^{2}})
derivative of (x|x|/2)
\frac{d}{dx}(\frac{x\left|x\right|}{2})
derivative of (60)/x
derivative\:\frac{60}{x}
integral of 1/(9-x^2)
\int\:\frac{1}{9-x^{2}}dx
integral of e^{-kNx}
\int\:e^{-kNx}dx
derivative of y=Ax^2+Be^{2x}
derivative\:y=Ax^{2}+Be^{2x}
y^'=2xy,y(0)=1
y^{\prime\:}=2xy,y(0)=1
(xy)dx+(x^2+y^2)dy=0
(xy)dx+(x^{2}+y^{2})dy=0
integral of x/(\sqrt[4]{x^2+2)}
\int\:\frac{x}{\sqrt[4]{x^{2}+2}}dx
expand 2(x-6)^3
expand\:2(x-6)^{3}
limit as z approaches 0 of z^3cos(1/z)
\lim\:_{z\to\:0}(z^{3}\cos(\frac{1}{z}))
tangent of f(x)=3sec(x),\at x= pi/3
tangent\:f(x)=3\sec(x),\at\:x=\frac{π}{3}
derivative of cos^3(e^{4x})
derivative\:\cos^{3}(e^{4x})
integral of \sqrt[9]{x^2}+xsqrt(x)
\int\:\sqrt[9]{x^{2}}+x\sqrt{x}dx
tangent of y=x^2-x+7
tangent\:y=x^{2}-x+7
(dx)/(dt)=3xt^2-3t^2
\frac{dx}{dt}=3xt^{2}-3t^{2}
integral from 0 to ln(5) of e^x-e^{-3x}
\int\:_{0}^{\ln(5)}e^{x}-e^{-3x}dx
derivative of (sqrt(x))/(4x+6)
derivative\:\frac{\sqrt{x}}{4x+6}
(\partial)/(\partial x)(xy+4/x+2/y)
\frac{\partial\:}{\partial\:x}(xy+\frac{4}{x}+\frac{2}{y})
derivative of y=ln(2)(x+3)
derivative\:y=\ln(2)(x+3)
taylor sqrt(x),16
taylor\:\sqrt{x},16
derivative of y=-8e^{-2x}-9e^{2x}-5e^x
derivative\:y=-8e^{-2x}-9e^{2x}-5e^{x}
maclaurin 9sin(3x)
maclaurin\:9\sin(3x)
integral of sqrt(1-49x^2)
\int\:\sqrt{1-49x^{2}}dx
integral from 0 to 9 of 2sqrt(x)-(2x)/3
\int\:_{0}^{9}2\sqrt{x}-\frac{2x}{3}dx
derivative of S(t)=(60t^2)/(t^2+150)
derivative\:S(t)=\frac{60t^{2}}{t^{2}+150}
tangent of xsqrt(x^2+60)(2.9)
tangent\:x\sqrt{x^{2}+60}(2.9)
f(x)=e^{10x}
f(x)=e^{10x}
tangent of r=3cos(3θ)
tangent\:r=3\cos(3θ)
(\partial)/(\partial y)(x^2y^2e^{2xy})
\frac{\partial\:}{\partial\:y}(x^{2}y^{2}e^{2xy})
limit as x approaches 1 of (x^2)/2
\lim\:_{x\to\:1}(\frac{x^{2}}{2})
derivative of (20x/(x^2-5))
\frac{d}{dx}(\frac{20x}{x^{2}-5})
(x^{3/2})^'
(x^{\frac{3}{2}})^{\prime\:}
derivative of (3x^2-3/(2x))
\frac{d}{dx}(\frac{3x^{2}-3}{2x})
integral of 2x^2e^x
\int\:2x^{2}e^{x}dx
y^'=1+9x-5y,y(1)=2
y^{\prime\:}=1+9x-5y,y(1)=2
(\partial)/(\partial y)(ln(sqrt(x^2+y^2)))
\frac{\partial\:}{\partial\:y}(\ln(\sqrt{x^{2}+y^{2}}))
integral of (9x^2+5x+9)/((x^2+1)^2)
\int\:\frac{9x^{2}+5x+9}{(x^{2}+1)^{2}}dx
maclaurin ln(4+x^2)
maclaurin\:\ln(4+x^{2})
integral from 1 to 2 of 15sqrt(4x^2-3)
\int\:_{1}^{2}15\sqrt{4x^{2}-3}dx
derivative of f(x)=x^2(1-6x)
derivative\:f(x)=x^{2}(1-6x)
sum from n=0 to infinity of 7(-1/7)^n
\sum\:_{n=0}^{\infty\:}7(-\frac{1}{7})^{n}
(\partial)/(\partial x)(-xsin(y)+e^x)
\frac{\partial\:}{\partial\:x}(-x\sin(y)+e^{x})
y^{''}-4y^'+2y=0,y(0)=0,y^'(0)=7
y^{\prime\:\prime\:}-4y^{\prime\:}+2y=0,y(0)=0,y^{\prime\:}(0)=7
limit as x approaches infinity of 1/8
\lim\:_{x\to\:\infty\:}(\frac{1}{8})
tangent of f(x)= 3/(4x+1),(-1,-1)
tangent\:f(x)=\frac{3}{4x+1},(-1,-1)
derivative of f(x)=((x^2+1))/((x^2-1))
derivative\:f(x)=\frac{(x^{2}+1)}{(x^{2}-1)}
area x+y^2=20,x+y=0
area\:x+y^{2}=20,x+y=0
derivative of f(x)=x^2-3x+4
derivative\:f(x)=x^{2}-3x+4
limit as x approaches-8 of 4x-2
\lim\:_{x\to\:-8}(4x-2)
(\partial)/(\partial y)(x/((y+z)))
\frac{\partial\:}{\partial\:y}(\frac{x}{(y+z)})
(\partial)/(\partial x)(xln(x))
\frac{\partial\:}{\partial\:x}(x\ln(x))
derivative of 2x+(200/x)
\frac{d}{dx}(2x+\frac{200}{x})
derivative of f(x)= 32/0
derivative\:f(x)=\frac{32}{0}
derivative of ln^2(x+2ln(x))
\frac{d}{dx}(\ln^{2}(x)+2\ln(x))
integral of 1/(x^2(sqrt(x^2-16)))
\int\:\frac{1}{x^{2}(\sqrt{x^{2}-16})}dx
integral of ln(cos(x))tan(x)
\int\:\ln(\cos(x))\tan(x)dx
(dy)/(dx)=(-24)/((2x+9)^3)
\frac{dy}{dx}=\frac{-24}{(2x+9)^{3}}
(\partial)/(\partial y)(e^{-y}cos(pix))
\frac{\partial\:}{\partial\:y}(e^{-y}\cos(πx))
integral of (x^2+e^x-sin(x))
\int\:(x^{2}+e^{x}-\sin(x))dx
(sqrt(3x))^'
(\sqrt{3x})^{\prime\:}
integral of 4tan^2(x)sec^2(x)
\int\:4\tan^{2}(x)\sec^{2}(x)dx
area y=3x,y= 5/7 x,y=54-x^2
area\:y=3x,y=\frac{5}{7}x,y=54-x^{2}
integral of arcsin(1/x)
\int\:\arcsin(\frac{1}{x})dx
taylor f(x)=8.8sqrt(x)
taylor\:f(x)=8.8\sqrt{x}
derivative of e^{2x}x(acos(x+bsin(x)))
\frac{d}{dx}(e^{2x}x(a\cos(x)+b\sin(x)))
y^{''}+3y^'-4y=-8e^xcos(2x)
y^{\prime\:\prime\:}+3y^{\prime\:}-4y=-8e^{x}\cos(2x)
derivative of 1/2 x-1/10
\frac{d}{dx}(\frac{1}{2}x-\frac{1}{10})
(\partial)/(\partial u)(sqrt(u^2+v^2+w^2))
\frac{\partial\:}{\partial\:u}(\sqrt{u^{2}+v^{2}+w^{2}})
1
..
719
720
721
722
723
..
2459