Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 2 of x^2+5x
\lim\:_{x\to\:2}(x^{2}+5x)
derivative of sin(x)e^{cos(x)}
derivative\:\sin(x)e^{\cos(x)}
integral of sin(7x+1)
\int\:\sin(7x+1)dx
(\partial)/(\partial y)(e^{-2x}cos(4y))
\frac{\partial\:}{\partial\:y}(e^{-2x}\cos(4y))
derivative of-7/((x-7)^2)
derivative\:-\frac{7}{(x-7)^{2}}
(\partial)/(\partial y)(e^x-e^{x^2})
\frac{\partial\:}{\partial\:y}(e^{x}-e^{x^{2}})
derivative of 4x^2+9
derivative\:4x^{2}+9
integral of (7x+cos(x))
\int\:(7x+\cos(x))dx
(dy)/(dx)+2/x y= 1/(x^2)
\frac{dy}{dx}+\frac{2}{x}y=\frac{1}{x^{2}}
limit as n approaches infinity of 2/n
\lim\:_{n\to\:\infty\:}(\frac{2}{n})
derivative of f(x)=(3ln(x))/(13x^2)
derivative\:f(x)=\frac{3\ln(x)}{13x^{2}}
limit as xn approaches 2 of (xn)^2-5xn+3
\lim\:_{xn\to\:2}((xn)^{2}-5xn+3)
integral of 7sin^6(x)cos^3(x)
\int\:7\sin^{6}(x)\cos^{3}(x)dx
limit as x approaches 5 of 7
\lim\:_{x\to\:5}(7)
(2x-y)dx+(2y-x)dy=0,y(1)=3
(2x-y)dx+(2y-x)dy=0,y(1)=3
derivative of csc(x)
derivative\:\csc(x)
integral of (1-sin(θ))/(θ+cos(θ))
\int\:\frac{1-\sin(θ)}{θ+\cos(θ)}dθ
integral of e^{-x}-sin(2x)
\int\:e^{-x}-\sin(2x)dx
derivative of (x^6-2^3)
\frac{d}{dx}((x^{6}-2)^{3})
2y^{''}-6y^'+4y=6e^{2t}
2y^{\prime\:\prime\:}-6y^{\prime\:}+4y=6e^{2t}
integral of e^{2x}(3+e^{2x})^5
\int\:e^{2x}(3+e^{2x})^{5}dx
integral from-1 to 2 of (5x)/(x^2-x-6)
\int\:_{-1}^{2}\frac{5x}{x^{2}-x-6}dx
y^{''}+3y^'+2y=4
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=4
integral of csc^3(x)cot^2(x)
\int\:\csc^{3}(x)\cot^{2}(x)dx
taylor e^θ
taylor\:e^{θ}
integral of ((e^{2x}+1))/(e^x)
\int\:\frac{(e^{2x}+1)}{e^{x}}dx
y^'= 1/y ,y(0)=1
y^{\prime\:}=\frac{1}{y},y(0)=1
derivative of f(x)=3x^2+1
derivative\:f(x)=3x^{2}+1
derivative of ln^3(2x+5)
\frac{d}{dx}(\ln^{3}(2x+5))
xy^'+y=x^4y^3
xy^{\prime\:}+y=x^{4}y^{3}
derivative of (6x-7^3(8x^2+9)^2)
\frac{d}{dx}((6x-7)^{3}(8x^{2}+9)^{2})
integral from 0 to 5 of (5-x)
\int\:_{0}^{5}(5-x)dx
xydy=ydx
xydy=ydx
area 4/x , 4/(x^2),x=7
area\:\frac{4}{x},\frac{4}{x^{2}},x=7
9y^{''}-y=xe^{x/3}
9y^{\prime\:\prime\:}-y=xe^{\frac{x}{3}}
implicit (dy)/(dx),x+y=xy
implicit\:\frac{dy}{dx},x+y=xy
(dy)/(dx)=(x^3+4y^3)/(3xy^2)
\frac{dy}{dx}=\frac{x^{3}+4y^{3}}{3xy^{2}}
derivative of 2x^2-1/x
\frac{d}{dx}(2x^{2}-\frac{1}{x})
integral from 0 to 8 of 1
\int\:_{0}^{8}1
limit as x approaches 3 of x^2-4x+10
\lim\:_{x\to\:3}(x^{2}-4x+10)
integral of tan^3(5x)sec(5x)
\int\:\tan^{3}(5x)\sec(5x)dx
integral of (x-1)/(x^2+x-6)
\int\:\frac{x-1}{x^{2}+x-6}dx
(x+y)^2dx+(2xy+x^2-3)dy=0,y(1)=1
(x+y)^{2}dx+(2xy+x^{2}-3)dy=0,y(1)=1
limit as x approaches 3/2 of (4x^2+12x+9)/(2x-3)
\lim\:_{x\to\:\frac{3}{2}}(\frac{4x^{2}+12x+9}{2x-3})
(dy)/(dx)=((y^2+y))/(x^2+x)
\frac{dy}{dx}=\frac{(y^{2}+y)}{x^{2}+x}
integral from 0 to infinity of xe^{-x/2}
\int\:_{0}^{\infty\:}xe^{-\frac{x}{2}}dx
integral from 0 to pi of 5e^xsin(x)
\int\:_{0}^{π}5e^{x}\sin(x)dx
sum from n=1 to infinity of 2
\sum\:_{n=1}^{\infty\:}2
derivative of ((x+6)/(x-6))^5
derivative\:(\frac{x+6}{x-6})^{5}
derivative of e^{-x/3}
\frac{d}{dx}(e^{-\frac{x}{3}})
integral of (1-x^2)^2x^2
\int\:(1-x^{2})^{2}x^{2}dx
integral of 7z^3e^z
\int\:7z^{3}e^{z}dz
area y=3x^4-3x^2,y=8x^2
area\:y=3x^{4}-3x^{2},y=8x^{2}
derivative of y=(2x-3)^4(x^2+x+1)^5
derivative\:y=(2x-3)^{4}(x^{2}+x+1)^{5}
derivative of a^{6x^2}
\frac{d}{dx}(a^{6x^{2}})
integral of (x^2)/(4x)
\int\:\frac{x^{2}}{4x}dx
x^2y^'+3xy=e^x
x^{2}y^{\prime\:}+3xy=e^{x}
2y^{''}-2y^'+13y=0
2y^{\prime\:\prime\:}-2y^{\prime\:}+13y=0
derivative of-4sin^3(3x)
\frac{d}{dx}(-4\sin^{3}(3x))
integral of 1/(5000x-x^2)
\int\:\frac{1}{5000x-x^{2}}dx
integral from 0 to 9 of |sqrt(2x+8)-x|
\int\:_{0}^{9}\left|\sqrt{2x+8}-x\right|dx
integral from 0 to pi/4 of 1-4sin^2(x)
\int\:_{0}^{\frac{π}{4}}1-4\sin^{2}(x)dx
integral of 2usin(u)
\int\:2u\sin(u)du
(dy}{dx}=\frac{x+y)/x
\frac{dy}{dx}=\frac{x+y}{x}
limit as x approaches 5 of x^5-9x+1
\lim\:_{x\to\:5}(x^{5}-9x+1)
integral of-4sin(x)
\int\:-4\sin(x)dx
derivative of 3x^2+2x-1
\frac{d}{dx}(3x^{2}+2x-1)
limit as t approaches 2 of t^3i+t^4j+t^5k
\lim\:_{t\to\:2}(t^{3}i+t^{4}j+t^{5}k)
(\partial)/(\partial x)(x^4+3xy^2-3y^2)
\frac{\partial\:}{\partial\:x}(x^{4}+3xy^{2}-3y^{2})
integral from 0 to 4 of (1+3x-x^2)
\int\:_{0}^{4}(1+3x-x^{2})dx
integral from-infinity to 0 of 1/(3-10x)
\int\:_{-\infty\:}^{0}\frac{1}{3-10x}dx
derivative of-4x^5+6x^7
derivative\:-4x^{5}+6x^{7}
limit as x approaches+0 of (e^x-1)/(5x)
\lim\:_{x\to\:+0}(\frac{e^{x}-1}{5x})
integral of (10x^2-9x+8)/(x^3+4x)
\int\:\frac{10x^{2}-9x+8}{x^{3}+4x}dx
tangent of f(x)=19x-1.86x^2,\at x=1
tangent\:f(x)=19x-1.86x^{2},\at\:x=1
(\partial}{\partial x}(\frac{10)/x)
\frac{\partial\:}{\partial\:x}(\frac{10}{x})
tangent of f(x)=(2x)/(x+1),\at x=1
tangent\:f(x)=\frac{2x}{x+1},\at\:x=1
(dy)/(dx)+4xy^2=0
\frac{dy}{dx}+4xy^{2}=0
integral of (4x^3)/(x^4+1)
\int\:\frac{4x^{3}}{x^{4}+1}dx
derivative of ((2t+1)^{3/2})/3
derivative\:\frac{(2t+1)^{\frac{3}{2}}}{3}
(dy)/(dx)=2^xln(2)+2/(x^2+1)
\frac{dy}{dx}=2^{x}\ln(2)+\frac{2}{x^{2}+1}
derivative of 6(5x^2+2sqrt(x^4+5))
\frac{d}{dx}(6(5x^{2}+2)\sqrt{x^{4}+5})
area x^2+4,-x^2-1,-2,3
area\:x^{2}+4,-x^{2}-1,-2,3
integral of x^4e^{-x^5}
\int\:x^{4}e^{-x^{5}}dx
integral of (3x)/(sqrt(2x^2+5))
\int\:\frac{3x}{\sqrt{2x^{2}+5}}dx
(\partial)/(\partial x)(cos(-t+y+e^x))
\frac{\partial\:}{\partial\:x}(\cos(-t+y+e^{x}))
integral of x^5e^{x^2}
\int\:x^{5}e^{x^{2}}dx
derivative of ln(cos(ln(x)))
\frac{d}{dx}(\ln(\cos(\ln(x))))
(dy)/(dt)=3te^{-y}
\frac{dy}{dt}=3te^{-y}
derivative of y=xarcsin(2x)
derivative\:y=x\arcsin(2x)
x((dy)/(dx))=x^3+16x^3y
x(\frac{dy}{dx})=x^{3}+16x^{3}y
(\partial)/(\partial x)(3x^3y-4/x+2y^{1/2})
\frac{\partial\:}{\partial\:x}(3x^{3}y-\frac{4}{x}+2y^{\frac{1}{2}})
integral from 1/7 to 3 of 8xln(7x)
\int\:_{\frac{1}{7}}^{3}8x\ln(7x)dx
tangent of y=3x+6cos(x),\at (pi/3)
tangent\:y=3x+6\cos(x),\at\:(\frac{π}{3})
inverse oflaplace s/(s^2+2s+3)
inverselaplace\:\frac{s}{s^{2}+2s+3}
derivative of f(x)=(2x^3-3x+1)/x
derivative\:f(x)=\frac{2x^{3}-3x+1}{x}
slope of y=x^2-2
slope\:y=x^{2}-2
laplacetransform e^{-t}(t^2)
laplacetransform\:e^{-t}(t^{2})
derivative of f(x)=sqrt(x)+\sqrt[7]{x}
derivative\:f(x)=\sqrt{x}+\sqrt[7]{x}
derivative of-x^3+3x
\frac{d}{dx}(-x^{3}+3x)
1
..
912
913
914
915
916
..
2459