Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)= 6/5 x^2+3/2
range\:f(x)=\frac{6}{5}x^{2}+\frac{3}{2}
distance (11.2,-2.2),(5.2,-10.2)
distance\:(11.2,-2.2),(5.2,-10.2)
inverse of f(x)=-1/4 x+15
inverse\:f(x)=-\frac{1}{4}x+15
inverse of f(x)= 9/x+4
inverse\:f(x)=\frac{9}{x}+4
range of f(x)=sqrt(1-(x-2)^2)
range\:f(x)=\sqrt{1-(x-2)^{2}}
extreme f(x)=12x^{2/3}-x
extreme\:f(x)=12x^{\frac{2}{3}}-x
intercepts of f(x)=(x^2-x-6)/(x^2-4)
intercepts\:f(x)=\frac{x^{2}-x-6}{x^{2}-4}
domain of f(x)=(2x+8)/(4x)
domain\:f(x)=\frac{2x+8}{4x}
domain of f(x)=sqrt(6x-1)x
domain\:f(x)=\sqrt{6x-1}x
inverse of f(x)=(2x+1)/(x^2-1)
inverse\:f(x)=\frac{2x+1}{x^{2}-1}
inverse of f(x)= 1/2 x-9
inverse\:f(x)=\frac{1}{2}x-9
inverse of y=log_{2}(x-10)
inverse\:y=\log_{2}(x-10)
inverse of y=(x-1)^2+2
inverse\:y=(x-1)^{2}+2
domain of f(x)=2(x-1)^2
domain\:f(x)=2(x-1)^{2}
domain of sqrt(7-x)
domain\:\sqrt{7-x}
extreme xe^{-x}
extreme\:xe^{-x}
intercepts of f(x)=(x^2-9)/(x+3)
intercepts\:f(x)=\frac{x^{2}-9}{x+3}
inverse of f(x)=x^2-4x-3
inverse\:f(x)=x^{2}-4x-3
inverse of f(x)=sqrt(x+2)-7
inverse\:f(x)=\sqrt{x+2}-7
perpendicular y=5x+2,(1,1)
perpendicular\:y=5x+2,(1,1)
asymptotes of f(x)=(3x-x^2)/(x^4-9x^2)
asymptotes\:f(x)=\frac{3x-x^{2}}{x^{4}-9x^{2}}
domain of f(x)=(x^3)/(x^2-4x-96)
domain\:f(x)=\frac{x^{3}}{x^{2}-4x-96}
domain of f(x)=-x^2-4
domain\:f(x)=-x^{2}-4
midpoint (5,-2),(-1,3)
midpoint\:(5,-2),(-1,3)
domain of f(x)= 2/(t^2+4)
domain\:f(x)=\frac{2}{t^{2}+4}
simplify (0)(40.4)
simplify\:(0)(40.4)
inflection 6x^4+8x^3
inflection\:6x^{4}+8x^{3}
symmetry (3x)/(x^2-4)
symmetry\:\frac{3x}{x^{2}-4}
domain of sqrt(1/x)
domain\:\sqrt{\frac{1}{x}}
domain of f(x)=sqrt(3x+15)
domain\:f(x)=\sqrt{3x+15}
line 3x^2+x-1/12 =0
line\:3x^{2}+x-\frac{1}{12}=0
extreme f(x)=6x^2+2x^3
extreme\:f(x)=6x^{2}+2x^{3}
midpoint (0.3,0.7),(0.1,0.9)
midpoint\:(0.3,0.7),(0.1,0.9)
domain of f(x)=(2x+4)/(x^2-5x)
domain\:f(x)=\frac{2x+4}{x^{2}-5x}
domain of f(x)=sqrt(4-5x+x^2)
domain\:f(x)=\sqrt{4-5x+x^{2}}
range of 1/x-4
range\:\frac{1}{x}-4
asymptotes of (x^2-x)/(x^2-5x+4)
asymptotes\:\frac{x^{2}-x}{x^{2}-5x+4}
critical f(x)= x/(x^2+7x+6)
critical\:f(x)=\frac{x}{x^{2}+7x+6}
domain of f(x)=sqrt(4x-3)
domain\:f(x)=\sqrt{4x-3}
inverse of ln(64.86)
inverse\:\ln(64.86)
domain of f(x)=(-x^2)/(x+1)
domain\:f(x)=\frac{-x^{2}}{x+1}
asymptotes of (x^2+x-12)/(x^2-4)
asymptotes\:\frac{x^{2}+x-12}{x^{2}-4}
domain of f(x)=sqrt(t-7)
domain\:f(x)=\sqrt{t-7}
inverse of h(x)=-x
inverse\:h(x)=-x
midpoint (-3,-2),(8,6)
midpoint\:(-3,-2),(8,6)
domain of f(x)=sqrt(x(4-x))
domain\:f(x)=\sqrt{x(4-x)}
extreme ln(2-5x^2)
extreme\:\ln(2-5x^{2})
intercepts of f(4)=-2x^2+4x+8
intercepts\:f(4)=-2x^{2}+4x+8
inflection f(x)= 1/(3x^2+8)
inflection\:f(x)=\frac{1}{3x^{2}+8}
critical f(x)= 5/(x^2-49)
critical\:f(x)=\frac{5}{x^{2}-49}
inflection f(x)=2x^3-3x^2+7x-4
inflection\:f(x)=2x^{3}-3x^{2}+7x-4
slope of 4x-3y=9
slope\:4x-3y=9
inverse of y=6x-2
inverse\:y=6x-2
inverse of 5x+8
inverse\:5x+8
inverse of f(x)=-sqrt(4-x^2)
inverse\:f(x)=-\sqrt{4-x^{2}}
domain of f(x)=(2x)/(x+4)
domain\:f(x)=\frac{2x}{x+4}
extreme ln(x^2+1)
extreme\:\ln(x^{2}+1)
asymptotes of f(x)=(x+5)/(x^2-16)
asymptotes\:f(x)=\frac{x+5}{x^{2}-16}
asymptotes of f(x)=(x^2+3x-10)/(x^2-4)
asymptotes\:f(x)=\frac{x^{2}+3x-10}{x^{2}-4}
domain of f(x)=(3x+2)/(sqrt(x^2-7x))
domain\:f(x)=\frac{3x+2}{\sqrt{x^{2}-7x}}
inverse of f(x)=-1/3 x-6
inverse\:f(x)=-\frac{1}{3}x-6
symmetry y=(x^2+1)/x
symmetry\:y=\frac{x^{2}+1}{x}
range of f(x)=e^{x+1}-1
range\:f(x)=e^{x+1}-1
line (-3,0),(0,-2)
line\:(-3,0),(0,-2)
asymptotes of f(x)= 4/(3+x)
asymptotes\:f(x)=\frac{4}{3+x}
monotone f(x)=4x^{3/7}-x^{4/7}
monotone\:f(x)=4x^{\frac{3}{7}}-x^{\frac{4}{7}}
midpoint (-8,4),(-4,-4)
midpoint\:(-8,4),(-4,-4)
critical f(x)=(x-9)^{2/3}
critical\:f(x)=(x-9)^{\frac{2}{3}}
slope ofintercept 3x-11y=-22
slopeintercept\:3x-11y=-22
perpendicular 3y=2x+5
perpendicular\:3y=2x+5
asymptotes of f(x)=(2x)/(x^2-4)
asymptotes\:f(x)=\frac{2x}{x^{2}-4}
domain of f(x)=sqrt(14x^2+14)
domain\:f(x)=\sqrt{14x^{2}+14}
symmetry x^2-2x-11
symmetry\:x^{2}-2x-11
domain of (sqrt(3-x))/(sqrt(x-2))
domain\:\frac{\sqrt{3-x}}{\sqrt{x-2}}
domain of f(x)=3^x
domain\:f(x)=3^{x}
inverse of f(x)=e^{4x+2}
inverse\:f(x)=e^{4x+2}
midpoint (8,-10),(2,-5)
midpoint\:(8,-10),(2,-5)
domain of f(x)=sqrt(x+4)+1
domain\:f(x)=\sqrt{x+4}+1
inverse of 122
inverse\:122
inverse of f(x)=(-15-2x)/3
inverse\:f(x)=\frac{-15-2x}{3}
range of-1/2 x^2-2x+6
range\:-\frac{1}{2}x^{2}-2x+6
parallel y=-1/9 x+2,(3,1)
parallel\:y=-\frac{1}{9}x+2,(3,1)
domain of x/2
domain\:\frac{x}{2}
inverse of f(x)=10-3x
inverse\:f(x)=10-3x
range of f(x)= 1/(x+7)
range\:f(x)=\frac{1}{x+7}
domain of f(x)=8ln(x)-x^2
domain\:f(x)=8\ln(x)-x^{2}
inverse of y=2x-4
inverse\:y=2x-4
asymptotes of f(x)=-3/(x-2)-1
asymptotes\:f(x)=-\frac{3}{x-2}-1
parity 793
parity\:793
shift f(x)=3cos(1/2 pix-pi)-3
shift\:f(x)=3\cos(\frac{1}{2}πx-π)-3
inverse of f(x)=x^5-6
inverse\:f(x)=x^{5}-6
critical f(x)=x^6(x-3)^5
critical\:f(x)=x^{6}(x-3)^{5}
f(x)=x^2+x-6
f(x)=x^{2}+x-6
intercepts of f(x)=x^2+16x+60
intercepts\:f(x)=x^{2}+16x+60
domain of f(x)=-1/3 (x+5)^2-4
domain\:f(x)=-\frac{1}{3}(x+5)^{2}-4
domain of f(x)=5(x+8)-5
domain\:f(x)=5(x+8)-5
critical (ln(x))/x
critical\:\frac{\ln(x)}{x}
asymptotes of f(x)=(3x)/(x-1)
asymptotes\:f(x)=\frac{3x}{x-1}
inverse of f(x)=-1/5 x-2
inverse\:f(x)=-\frac{1}{5}x-2
periodicity of y=-5cos(x)
periodicity\:y=-5\cos(x)
1
..
220
221
222
223
224
..
1324