Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of f(x)=x^3-3x+2\at (2.4)
tangent\:f(x)=x^{3}-3x+2\at\:(2.4)
area x=sqrt(y),x= y/2
area\:x=\sqrt{y},x=\frac{y}{2}
limit as x approaches infinity of 2x^2-3
\lim\:_{x\to\:\infty\:}(2x^{2}-3)
area x^2-4,x=-4,x=3,y=0
area\:x^{2}-4,x=-4,x=3,y=0
integral from 0 to 1 of (3x^2-4x+1)
\int\:_{0}^{1}(3x^{2}-4x+1)dx
y^{''}+1/4 y=0
y^{\prime\:\prime\:}+\frac{1}{4}y=0
limit as x approaches-4 of 3
\lim\:_{x\to\:-4}(3)
limit as x approaches infinity of 1/(log_{2)(x)}
\lim\:_{x\to\:\infty\:}(\frac{1}{\log_{2}(x)})
integral from-1 to 0 of 1/(x^2)
\int\:_{-1}^{0}\frac{1}{x^{2}}dx
inverse oflaplace (4se^{-4s})/(2s^2+50)
inverselaplace\:\frac{4se^{-4s}}{2s^{2}+50}
inverse oflaplace (s+1)/(s^2+s+1)
inverselaplace\:\frac{s+1}{s^{2}+s+1}
d/(dt)(ln(sec(t)+tan(t)))
\frac{d}{dt}(\ln(\sec(t)+\tan(t)))
y^'=y(2x-5)
y^{\prime\:}=y(2x-5)
integral of 24(1-x)^5
\int\:24(1-x)^{5}dx
derivative of A(2xe^{2x}+e^{2x}*2x^2)
\frac{d}{dx}(A(2xe^{2x}+e^{2x}\cdot\:2x^{2}))
derivative of f(x)=x(3x^4-sqrt(x))
derivative\:f(x)=x(3x^{4}-\sqrt{x})
derivative of 10log_{10}(x)
derivative\:10\log_{10}(x)
limit as x approaches 9 of 6/9
\lim\:_{x\to\:9}(\frac{6}{9})
(\partial)/(\partial x)(x^2+4y^2+3z^2)
\frac{\partial\:}{\partial\:x}(x^{2}+4y^{2}+3z^{2})
normal of y=4x^2,(-1,4)
normal\:y=4x^{2},(-1,4)
xy^'-2y=2x^2+2x+1
xy^{\prime\:}-2y=2x^{2}+2x+1
slope of (-2,0),(0,1)
slope\:(-2,0),(0,1)
y^'+3/(t^2)y=0
y^{\prime\:}+\frac{3}{t^{2}}y=0
laplacetransform sin(6(t-(3pi)/6))
laplacetransform\:\sin(6(t-\frac{3π}{6}))
derivative of x(e^{-x})
\frac{d}{dx}(x(e^{-x}))
(\partial)/(\partial x)((xy)/(e^{x^2+y^2)})
\frac{\partial\:}{\partial\:x}(\frac{xy}{e^{x^{2}+y^{2}}})
derivative of ln(arctan(2x^3))
derivative\:\ln(\arctan(2x^{3}))
integral of 3/x+2e^x
\int\:\frac{3}{x}+2e^{x}dx
derivative of 3x-x^2
\frac{d}{dx}(3x-x^{2})
derivative of (4-x^2/(4+x^2))
\frac{d}{dx}(\frac{4-x^{2}}{4+x^{2}})
integral of (x+1/(x^4sqrt(x)))
\int\:(x+\frac{1}{x^{4}\sqrt{x}})dx
integral of sec^8(x)
\int\:\sec^{8}(x)dx
(\partial)/(\partial x)(40xy*e^{5x^2-2y})
\frac{\partial\:}{\partial\:x}(40xy\cdot\:e^{5x^{2}-2y})
integral of 1/4 x^3
\int\:\frac{1}{4}x^{3}dx
integral of ((sqrt(x)-x^3e^x+x^2)/(x^3))
\int\:(\frac{\sqrt{x}-x^{3}e^{x}+x^{2}}{x^{3}})dx
y^'=sqrt((1-y^2)/(e^x))
y^{\prime\:}=\sqrt{\frac{1-y^{2}}{e^{x}}}
sum from n=0 to infinity of p^n
\sum\:_{n=0}^{\infty\:}p^{n}
limit as x approaches 3 of 6x
\lim\:_{x\to\:3}(6x)
integral of q/(pi(-0.125x+0.03125)^2)
\int\:\frac{q}{π(-0.125x+0.03125)^{2}}dx
integral of 1/(2-2x)
\int\:\frac{1}{2-2x}dx
d/(dt)(t/(10)sin(5t))
\frac{d}{dt}(\frac{t}{10}\sin(5t))
derivative of sqrt(x^2-4x)
\frac{d}{dx}(\sqrt{x^{2}-4x})
(1+x^2)dy+(xy+x^3+x)dx=0
(1+x^{2})dy+(xy+x^{3}+x)dx=0
(dy)/(dx)=((6x-2xy^3))/(y^2)
\frac{dy}{dx}=\frac{(6x-2xy^{3})}{y^{2}}
tangent of 2x^2+3x-2
tangent\:2x^{2}+3x-2
derivative of f(t)=(6t+38)/(t+9)
derivative\:f(t)=\frac{6t+38}{t+9}
integral from 1 to 6 of (x^2+1)/(7x-x^2)
\int\:_{1}^{6}\frac{x^{2}+1}{7x-x^{2}}dx
derivative of sqrt(pix)
\frac{d}{dx}(\sqrt{πx})
(dy)/(dx)+4/x y=-3x
\frac{dy}{dx}+\frac{4}{x}y=-3x
inverse oflaplace 1/((s^2+2s+1))
inverselaplace\:\frac{1}{(s^{2}+2s+1)}
derivative of (e^x/((1-e^x)^2))
\frac{d}{dx}(\frac{e^{x}}{(1-e^{x})^{2}})
laplacetransform f(t)=-2
laplacetransform\:f(t)=-2
limit as x approaches 0 of 0/(x^6)
\lim\:_{x\to\:0}(\frac{0}{x^{6}})
derivative of y=x^2+2x
derivative\:y=x^{2}+2x
limit as x approaches 0 of xln(x^2)
\lim\:_{x\to\:0}(x\ln(x^{2}))
limit as x approaches infinity of e^{ax}
\lim\:_{x\to\:\infty\:}(e^{ax})
derivative of ln(x^2+7)
\frac{d}{dx}(\ln(x^{2}+7))
(x^{-1})^'
(x^{-1})^{\prime\:}
derivative of (x-1)^2(x-1.05)^2
derivative\:(x-1)^{2}(x-1.05)^{2}
integral of x/(x^2-7x+12)
\int\:\frac{x}{x^{2}-7x+12}dx
limit as x approaches 1/2 of-4x+2
\lim\:_{x\to\:\frac{1}{2}}(-4x+2)
derivative of sqrt(3x-x^2)
\frac{d}{dx}(\sqrt{3x-x^{2}})
integral from 0 to pi/(26) of tan(13x)
\int\:_{0}^{\frac{π}{26}}\tan(13x)dx
5x^2y^'=y^'+2xe^{-y}
5x^{2}y^{\prime\:}=y^{\prime\:}+2xe^{-y}
y^{''}+4y^'+13y=0,y(0)=7,y(0)=7,y^'(0)=7
y^{\prime\:\prime\:}+4y^{\prime\:}+13y=0,y(0)=7,y(0)=7,y^{\prime\:}(0)=7
(\partial)/(\partial x)(2y(y^2+e^{2x}))
\frac{\partial\:}{\partial\:x}(2y(y^{2}+e^{2x}))
integral from 0 to N of e^{(-st)}sin(2t)
\int\:_{0}^{N}e^{(-st)}\sin(2t)dt
limit as h approaches 3 of (3(x+h)^3-3x^3)/h
\lim\:_{h\to\:3}(\frac{3(x+h)^{3}-3x^{3}}{h})
integral from-1 to 2 of (2x-7)/(x^3)
\int\:_{-1}^{2}\frac{2x-7}{x^{3}}dx
maclaurin 1/(1-x),3
maclaurin\:\frac{1}{1-x},3
integral from 0 to 1 of 2/(x-2)
\int\:_{0}^{1}\frac{2}{x-2}dx
derivative of 1/(1+2x)
\frac{d}{dx}(\frac{1}{1+2x})
derivative of sqrt(9+5x)
\frac{d}{dx}(\sqrt{9+5x})
derivative of 2x^{-7\sqrt[3]{x}}
\frac{d}{dx}(2x^{-7\sqrt[3]{x}})
sum from n=1 to infinity of n!2^nn^{-n}
\sum\:_{n=1}^{\infty\:}n!2^{n}n^{-n}
derivative of sqrt(1+4x^2)
derivative\:\sqrt{1+4x^{2}}
laplacetransform 5(t-4)
laplacetransform\:5(t-4)
integral of (x^2+sqrt(2+x))/(\sqrt[3]{2+x)}
\int\:\frac{x^{2}+\sqrt{2+x}}{\sqrt[3]{2+x}}dx
derivative of x^2*2
derivative\:x^{2}\cdot\:2
limit as x approaches infinity of-2e^{-x}+2
\lim\:_{x\to\:\infty\:}(-2e^{-x}+2)
integral of 3xsqrt(y)
\int\:3x\sqrt{y}dy
implicit (dy)/(dx),y=(sin(x))^{6x}
implicit\:\frac{dy}{dx},y=(\sin(x))^{6x}
(\partial)/(\partial x)(x^2+y^2-9)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}-9)
integral of sec^2(2xta)n^62x
\int\:\sec^{2}(2xta)n^{6}2xdx
derivative of 3/x+e^{2x}*2
\frac{d}{dx}(\frac{3}{x}+e^{2x}\cdot\:2)
tangent of f(x)=x^2-3,(2,1)
tangent\:f(x)=x^{2}-3,(2,1)
sum from n=0 to infinity of (n+1)/3
\sum\:_{n=0}^{\infty\:}\frac{n+1}{3}
derivative of f(x)=2sin(x)
derivative\:f(x)=2\sin(x)
laplacetransform e^{-2t}(t^2+4t+5)
laplacetransform\:e^{-2t}(t^{2}+4t+5)
integral from a to 2a of (a-(a^3)/(x^2))
\int\:_{a}^{2a}(a-\frac{a^{3}}{x^{2}})dx
derivative of 2/(sqrt(x^2+5))
\frac{d}{dx}(\frac{2}{\sqrt{x^{2}+5}})
integral of cos(x)cos(sin(x))
\int\:\cos(x)\cos(\sin(x))dx
limit as x approaches+5-of 5/((x-5)^3)
\lim\:_{x\to\:+5-}(\frac{5}{(x-5)^{3}})
integral of ((3x+5)^3)/(10)
\int\:\frac{(3x+5)^{3}}{10}dx
d/(du)(u^3-5u^2+7/(3u^2)+6)
\frac{d}{du}(u^{3}-5u^{2}+\frac{7}{3u^{2}}+6)
(\partial)/(\partial x)(10990+1120x+873y)
\frac{\partial\:}{\partial\:x}(10990+1120x+873y)
tangent of sqrt(5x+1)
tangent\:\sqrt{5x+1}
integral of (4+3x)/(1+x^2)
\int\:\frac{4+3x}{1+x^{2}}dx
integral of (e^{-2x})/(x^2)
\int\:\frac{e^{-2x}}{x^{2}}dx
integral from 0 to pi/3 of sec^4(x)
\int\:_{0}^{\frac{π}{3}}\sec^{4}(x)dx
1
..
1205
1206
1207
1208
1209
..
2459