Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (7/(x^2+1))
\int\:(\frac{7}{x^{2}+1})dx
derivative of csc^3(x^2)
\frac{d}{dx}(\csc^{3}(x^{2}))
derivative of (1+x^3^{2020})
\frac{d}{dx}((1+x^{3})^{2020})
derivative of 4e^{-x^2}
\frac{d}{dx}(4e^{-x^{2}})
slope of (8,8),(4,6)
slope\:(8,8),(4,6)
derivative of e^{2x}+2e^{2x}x
derivative\:e^{2x}+2e^{2x}x
(dy)/(dt)+ay=b
\frac{dy}{dt}+ay=b
tangent of 2sqrt(x)
tangent\:2\sqrt{x}
derivative of (x^4+36x^2)/((x^2+12)^2)
derivative\:\frac{x^{4}+36x^{2}}{(x^{2}+12)^{2}}
limit as x approaches 2 of e^{x^2-2x}
\lim\:_{x\to\:2}(e^{x^{2}-2x})
integral of x/(5x-4)
\int\:\frac{x}{5x-4}dx
integral of x(sqrt(a^2-x^2))
\int\:x(\sqrt{a^{2}-x^{2}})dx
derivative of f(x)= 1/2 x^2
derivative\:f(x)=\frac{1}{2}x^{2}
(\partial)/(\partial y)(ln(x^8y))
\frac{\partial\:}{\partial\:y}(\ln(x^{8}y))
(\partial)/(\partial x)(x^{1/4}*y^{3/4})
\frac{\partial\:}{\partial\:x}(x^{\frac{1}{4}}\cdot\:y^{\frac{3}{4}})
limit as x approaches pi-of 4x
\lim\:_{x\to\:π-}(4x)
(\partial)/(\partial x)(6x^{-3}-8x^{-5})
\frac{\partial\:}{\partial\:x}(6x^{-3}-8x^{-5})
derivative of 500x-(x^2/(ln(x+300)))
\frac{d}{dx}(500x-\frac{x^{2}}{\ln(x+300)})
derivative of (3x^2-6x+10(x^3))
\frac{d}{dx}((3x^{2}-6x+10)(x^{3}))
y^{''}+2y^'+5y=e^{(-x)}sec(2x)
y^{\prime\:\prime\:}+2y^{\prime\:}+5y=e^{(-x)}\sec(2x)
derivative of (12/(x^5)-7/(\sqrt[5]{x)})
\frac{d}{dx}(\frac{12}{x^{5}}-\frac{7}{\sqrt[5]{x}})
derivative of 4e^{5x}
derivative\:4e^{5x}
derivative of e^{x/y}ln((x^2/y))
\frac{d}{dx}(e^{\frac{x}{y}}\ln(\frac{x^{2}}{y}))
limit as x approaches 8 of 2
\lim\:_{x\to\:8}(2)
integral from 2 to 9 of 1/(x^2-1)
\int\:_{2}^{9}\frac{1}{x^{2}-1}dx
(xy-x)dx+(xy+y)dy=0
(xy-x)dx+(xy+y)dy=0
integral of xcos((npix)/3)
\int\:x\cos(\frac{nπx}{3})dx
integral of sin(r)
\int\:\sin(r)dr
tangent of y=9e^x+x
tangent\:y=9e^{x}+x
(dy)/(dx)=e^{2x-3y}
\frac{dy}{dx}=e^{2x-3y}
(\partial)/(\partial x)(7xcos(x)cos(y))
\frac{\partial\:}{\partial\:x}(7x\cos(x)\cos(y))
(dy)/(dt)=8-y/(200+3t)
\frac{dy}{dt}=8-\frac{y}{200+3t}
tangent of 7e^xcos(x)
tangent\:7e^{x}\cos(x)
tangent of f(x)=-2xe^{x^2},\at x=2
tangent\:f(x)=-2xe^{x^{2}},\at\:x=2
sum from n=4 to infinity of (x^n)/(n^5)
\sum\:_{n=4}^{\infty\:}\frac{x^{n}}{n^{5}}
derivative of sqrt(x-1)(x^2+1)
derivative\:\sqrt{x-1}(x^{2}+1)
limit as x approaches 0+of 6-1/(x^3)
\lim\:_{x\to\:0+}(6-\frac{1}{x^{3}})
t^2y^{''}-8ty^'+8y=0
t^{2}y^{\prime\:\prime\:}-8ty^{\prime\:}+8y=0
integral of 6xln(x)
\int\:6x\ln(x)dx
derivative of sin(t^2)
derivative\:\sin(t^{2})
integral of te^{-i2pift}
\int\:te^{-i2πft}dt
integral from 0 to pi of cos(3x)
\int\:_{0}^{π}\cos(3x)dx
y^{''}+4y^'+13y=0,y(0)=7,y^'(0)=7
y^{\prime\:\prime\:}+4y^{\prime\:}+13y=0,y(0)=7,y^{\prime\:}(0)=7
derivative of f(x)=(3x-4)
derivative\:f(x)=(3x-4)
derivative of 50sqrt(x)
\frac{d}{dx}(50\sqrt{x})
maclaurin ln(1+x^2)
maclaurin\:\ln(1+x^{2})
derivative of f(x)=e^2+ln(7)
derivative\:f(x)=e^{2}+\ln(7)
((1-cos(x))/x)^'
(\frac{1-\cos(x)}{x})^{\prime\:}
integral of (x-2)/(x^2+x+1)
\int\:\frac{x-2}{x^{2}+x+1}dx
derivative of-csc^2(x-cos(2x)*2)
\frac{d}{dx}(-\csc^{2}(x)-\cos(2x)\cdot\:2)
(y^2+1)dx=y(sec^2(x))dy
(y^{2}+1)dx=y(\sec^{2}(x))dy
derivative of (1-x(1+x^2)^{-1})
\frac{d}{dx}((1-x)(1+x^{2})^{-1})
integral of (9+sqrt(x)+x)/x
\int\:\frac{9+\sqrt{x}+x}{x}dx
sum from n=1 to infinity of arctan(19n)
\sum\:_{n=1}^{\infty\:}\arctan(19n)
integral of-4x^2sin(pix)
\int\:-4x^{2}\sin(πx)dx
tangent of f(x)=sqrt(5x+1),\at x=3
tangent\:f(x)=\sqrt{5x+1},\at\:x=3
(\partial)/(\partial x)(x-3y^2+4x^2y^3)
\frac{\partial\:}{\partial\:x}(x-3y^{2}+4x^{2}y^{3})
derivative of 4x^2+5
derivative\:4x^{2}+5
integral of (3x^2+2x)/(x^2-1)
\int\:\frac{3x^{2}+2x}{x^{2}-1}dx
derivative of e^x+ln(x)
\frac{d}{dx}(e^{x}+\ln(x))
y^{''}-4y^'=6t
y^{\prime\:\prime\:}-4y^{\prime\:}=6t
inverse oflaplace (7s^3-9s+1)/(3s^5)
inverselaplace\:\frac{7s^{3}-9s+1}{3s^{5}}
integral of 3/(x(x^4+1))
\int\:\frac{3}{x(x^{4}+1)}dx
(\partial)/(\partial z)(cos(xy))
\frac{\partial\:}{\partial\:z}(\cos(xy))
xyy^'-y^2=x^4
xyy^{\prime\:}-y^{2}=x^{4}
derivative of e^x*ln(x)
derivative\:e^{x}\cdot\:\ln(x)
taylor 1/(1+x^2)
taylor\:\frac{1}{1+x^{2}}
integral of 17e^{-17x}
\int\:17e^{-17x}dx
limit as x approaches 0 of x(1+1/x)
\lim\:_{x\to\:0}(x(1+\frac{1}{x}))
tangent of y=((x-1))/((x+1))
tangent\:y=\frac{(x-1)}{(x+1)}
(\partial)/(\partial y)(ln((xy)/(y^2+z^2)))
\frac{\partial\:}{\partial\:y}(\ln(\frac{xy}{y^{2}+z^{2}}))
(\partial)/(\partial y)(ye^{yx})
\frac{\partial\:}{\partial\:y}(ye^{yx})
derivative of 3cos(x)-2sin(x)
derivative\:3\cos(x)-2\sin(x)
integral of 3x^2+2
\int\:3x^{2}+2dx
limit as x approaches 0+of x-1
\lim\:_{x\to\:0+}(x-1)
area y=sqrt(5x),x=5
area\:y=\sqrt{5x},x=5
sum from n=1 to infinity of e^{-4n}
\sum\:_{n=1}^{\infty\:}e^{-4n}
(\partial)/(\partial y)(ln(x-7y))
\frac{\partial\:}{\partial\:y}(\ln(x-7y))
integral of 1/(sqrt(3-2x))
\int\:\frac{1}{\sqrt{3-2x}}dx
derivative of-(14/(x^3))
\frac{d}{dx}(-\frac{14}{x^{3}})
(11+x^2)y^'-2xy=0
(11+x^{2})y^{\prime\:}-2xy=0
integral of 1/(8x^2-16x+64)
\int\:\frac{1}{8x^{2}-16x+64}dx
(\partial)/(\partial t)(se^t)
\frac{\partial\:}{\partial\:t}(se^{t})
(\partial)/(\partial t)(ssin(t))
\frac{\partial\:}{\partial\:t}(s\sin(t))
limit as x approaches-2 of 5/(x+2)
\lim\:_{x\to\:-2}(\frac{5}{x+2})
f(x)=2^{3x^2-6}
f(x)=2^{3x^{2}-6}
tangent of f(x)=-6x^2-2x,\at x=3
tangent\:f(x)=-6x^{2}-2x,\at\:x=3
(dP)/(dt)=5sqrt(Pt),P(1)=3
\frac{dP}{dt}=5\sqrt{Pt},P(1)=3
derivative of x/(4.5c(c-x))
\frac{d}{dx}(\frac{x}{4.5c}(c-x))
integral from 0 to 1 of (x^2+1)^2
\int\:_{0}^{1}(x^{2}+1)^{2}dx
limit as t approaches 6 of 8(t-5)(t-7)
\lim\:_{t\to\:6}(8(t-5)(t-7))
derivative of (x+3/x /(sqrt(x)))
\frac{d}{dx}(\frac{x+\frac{3}{x}}{\sqrt{x}})
integral of (x^2+1)
\int\:(x^{2}+1)dx
integral of 2^{5x}
\int\:2^{5x}dx
tangent of y=x^2-7,(3,2)
tangent\:y=x^{2}-7,(3,2)
integral of e^{10x}
\int\:e^{10x}dx
(\partial)/(\partial y)(xy^3)
\frac{\partial\:}{\partial\:y}(xy^{3})
(\partial)/(\partial x)(xy^4)
\frac{\partial\:}{\partial\:x}(xy^{4})
integral of ((2x^2+9x+2))/((x^2+1)^2)
\int\:\frac{(2x^{2}+9x+2)}{(x^{2}+1)^{2}}dx
integral of (2x+1)/(sqrt(x^2-1))
\int\:\frac{2x+1}{\sqrt{x^{2}-1}}dx
1
..
272
273
274
275
276
..
2459