Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (x^3)/9
derivative\:\frac{x^{3}}{9}
(sin(xy)+xycos(xy))dx+(x^2cos(xy))dy=0
(\sin(xy)+xy\cos(xy))dx+(x^{2}\cos(xy))dy=0
limit as x approaches 2+of (x^2+1)/(x-2)
\lim\:_{x\to\:2+}(\frac{x^{2}+1}{x-2})
integral from 1 to infinity of e^{-11x}
\int\:_{1}^{\infty\:}e^{-11x}dx
derivative of y=e^{-x}ln(x)
derivative\:y=e^{-x}\ln(x)
limit as x approaches 3+of 1/(3-x)
\lim\:_{x\to\:3+}(\frac{1}{3-x})
integral of 1/(sqrt(x^2+2^2))
\int\:\frac{1}{\sqrt{x^{2}+2^{2}}}dx
(\partial)/(\partial x)(ln(x-6y))
\frac{\partial\:}{\partial\:x}(\ln(x-6y))
integral of 2cos(1/2 x)
\int\:2\cos(\frac{1}{2}x)dx
(\partial)/(\partial y)(4x^3y^2-2xy^3)
\frac{\partial\:}{\partial\:y}(4x^{3}y^{2}-2xy^{3})
derivative of x^3+7e^x
derivative\:x^{3}+7e^{x}
(xdy)/(dx)=y^2-4
\frac{xdy}{dx}=y^{2}-4
(dy)/(dx)=(y/x+1/4)^2
\frac{dy}{dx}=(\frac{y}{x}+\frac{1}{4})^{2}
tangent of y=(f(x))^2,\at x=0
tangent\:y=(f(x))^{2},\at\:x=0
derivative of 4500(1-1/50 t)^2
derivative\:4500(1-\frac{1}{50}t)^{2}
integral of (2x^2+8x-8)/(x-4)
\int\:\frac{2x^{2}+8x-8}{x-4}dx
derivative of f(x)=((x-2)^5)/(16)
derivative\:f(x)=\frac{(x-2)^{5}}{16}
limit as x approaches infinity of (2x^3-5x+4)/(x^2+3x-4)
\lim\:_{x\to\:\infty\:}(\frac{2x^{3}-5x+4}{x^{2}+3x-4})
maclaurin xcos(x)
maclaurin\:x\cos(x)
integral of 9/(x^2-6x+18)
\int\:\frac{9}{x^{2}-6x+18}dx
inverse oflaplace (0.6)/s
inverselaplace\:\frac{0.6}{s}
integral from-1 to 0 of-1
\int\:_{-1}^{0}-1dx
integral of cos((npix)/L)sin((npix)/L)
\int\:\cos(\frac{nπx}{L})\sin(\frac{nπx}{L})dx
tangent of f(x)=(20)/(sqrt(x-1)),\at x=5
tangent\:f(x)=\frac{20}{\sqrt{x-1}},\at\:x=5
laplacetransform t^2t^3
laplacetransform\:t^{2}t^{3}
integral from 0 to infinity of xe^{-2x}
\int\:_{0}^{\infty\:}xe^{-2x}dx
integral of (-4xy+2x^3-2y+3)
\int\:(-4xy+2x^{3}-2y+3)dx
integral of (sin(wt))^2
\int\:(\sin(wt))^{2}dt
integral of (2^x+e^x)
\int\:(2^{x}+e^{x})dx
integral from-3 to 3 of (14)/(x^2-6x-40)
\int\:_{-3}^{3}\frac{14}{x^{2}-6x-40}dx
(\partial}{\partial x}(\frac{(y^3))/x)
\frac{\partial\:}{\partial\:x}(\frac{(y^{3})}{x})
tangent of y=x^2+x,(0,0)
tangent\:y=x^{2}+x,(0,0)
integral from 0 to 1 of (22)/(4y-1)
\int\:_{0}^{1}\frac{22}{4y-1}dy
derivative of (x^2-1/(x^2-4))
\frac{d}{dx}(\frac{x^{2}-1}{x^{2}-4})
integral of (cos(y))/(sin^2(y))
\int\:\frac{\cos(y)}{\sin^{2}(y)}dy
(\partial)/(\partial x)(5e^y)
\frac{\partial\:}{\partial\:x}(5e^{y})
sum from n=1 to infinity of 1/((n^2+8n))
\sum\:_{n=1}^{\infty\:}\frac{1}{(n^{2}+8n)}
integral of 1/(x(1+ln(x))(2+ln(x)))
\int\:\frac{1}{x(1+\ln(x))(2+\ln(x))}dx
integral of (8+5x)/(1+x^2)
\int\:\frac{8+5x}{1+x^{2}}dx
limit as x approaches-10-of 1/(x+10)
\lim\:_{x\to\:-10-}(\frac{1}{x+10})
derivative of tan(4x^5sec(2x^3))
\frac{d}{dx}(\tan(4x^{5})\sec(2x^{3}))
integral of pi^2-x^2
\int\:π^{2}-x^{2}dx
integral of 8/(1+8x)
\int\:\frac{8}{1+8x}dx
derivative of (3x^2^{2x}*(x^2+2x)^2)
\frac{d}{dx}((3x^{2})^{2x}\cdot\:(x^{2}+2x)^{2})
integral of (2x)/((x-1)(x-3))
\int\:\frac{2x}{(x-1)(x-3)}dx
integral of tan^3(θ)sec^4(θ)
\int\:\tan^{3}(θ)\sec^{4}(θ)dθ
integral of (4-x^3-5x^5)
\int\:(4-x^{3}-5x^{5})dx
limit as x approaches 0+of tan^x(6x)
\lim\:_{x\to\:0+}(\tan^{x}(6x))
limit as x approaches 0 of e^1
\lim\:_{x\to\:0}(e^{1})
integral of x^3sqrt(x^2+44)
\int\:x^{3}\sqrt{x^{2}+44}dx
limit as x approaches 0 of ((cos(ax)-cos(bx)))/(x^2)
\lim\:_{x\to\:0}(\frac{(\cos(ax)-\cos(bx))}{x^{2}})
derivative of (sqrt(2x^2)/(cos(x)))
\frac{d}{dx}(\frac{\sqrt{2x^{2}}}{\cos(x)})
derivative of ln^4(x)
\frac{d}{dx}(\ln^{4}(x))
inverse oflaplace (s+2)/(s(s+1)^2)
inverselaplace\:\frac{s+2}{s(s+1)^{2}}
derivative of g(t)=2t^{-3/4}
derivative\:g(t)=2t^{-\frac{3}{4}}
(\partial)/(\partial x)(e^x+yz)
\frac{\partial\:}{\partial\:x}(e^{x}+yz)
3xy^'-y(x+1)+7y^4=0
3xy^{\prime\:}-y(x+1)+7y^{4}=0
implicit (dy)/(dx),x^2+y^2=24
implicit\:\frac{dy}{dx},x^{2}+y^{2}=24
derivative of cos^2(t)
derivative\:\cos^{2}(t)
derivative of tan^6(x)
derivative\:\tan^{6}(x)
limit as h approaches 0 of cos(3/h)
\lim\:_{h\to\:0}(\cos(\frac{3}{h}))
integral of 6θsec^2(θ)
\int\:6θ\sec^{2}(θ)dθ
integral of t^6
\int\:t^{6}dt
f(x)=(sin(1/x)*x^3)/(ln(x))
f(x)=\frac{\sin(\frac{1}{x})\cdot\:x^{3}}{\ln(x)}
d/(dt)(e^{-at})
\frac{d}{dt}(e^{-at})
integral of 1/((49-x^2)^{3/2)}
\int\:\frac{1}{(49-x^{2})^{\frac{3}{2}}}dx
derivative of f(x)=arccos(2x)
derivative\:f(x)=\arccos(2x)
slope ofintercept (-10,-7),(-5,-9)
slopeintercept\:(-10,-7),(-5,-9)
domain of f(x)=arctan((2x)/(1-x^2))
domain\:f(x)=\arctan(\frac{2x}{1-x^{2}})
integral of (\sqrt[4]{x^5})
\int\:(\sqrt[4]{x^{5}})dx
(\partial)/(\partial s)(1+st)
\frac{\partial\:}{\partial\:s}(1+st)
integral of (11x+64)/(x^2+13x+40)
\int\:\frac{11x+64}{x^{2}+13x+40}dx
limit as x approaches 0 of ((x^2))/(e-1)
\lim\:_{x\to\:0}(\frac{(x^{2})}{e-1})
(\partial)/(\partial x)(1-x^2-x-2y^2+y)
\frac{\partial\:}{\partial\:x}(1-x^{2}-x-2y^{2}+y)
derivative of ln(2)+ln(x)
derivative\:\ln(2)+\ln(x)
derivative of y=(e^{6x})/(e^{6x)+3}
derivative\:y=\frac{e^{6x}}{e^{6x}+3}
(\partial)/(\partial x)(e^{-3y}cos(pix))
\frac{\partial\:}{\partial\:x}(e^{-3y}\cos(πx))
6y^{''}-y^'-2y=0
6y^{\prime\:\prime\:}-y^{\prime\:}-2y=0
integral of (1+sin(x))/(1+cos(x))
\int\:\frac{1+\sin(x)}{1+\cos(x)}dx
(\partial}{\partial x}(\frac{(y-3x))/z)
\frac{\partial\:}{\partial\:x}(\frac{(y-3x)}{z})
tangent of f(x)=x^2+8,(-3,17)
tangent\:f(x)=x^{2}+8,(-3,17)
integral from 2 to 7 of 1/(x^2-1)
\int\:_{2}^{7}\frac{1}{x^{2}-1}dx
tangent of y=(6x)/(x+2)
tangent\:y=\frac{6x}{x+2}
derivative of (1+5x(1-7x))
\frac{d}{dx}((1+5x)(1-7x))
derivative of (log_{e}(x)^x)
\frac{d}{dx}((\log_{e}(x))^{x})
y^{''}+7y^'+10y=0,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}+7y^{\prime\:}+10y=0,y(0)=1,y^{\prime\:}(0)=0
integral of 1/(sqrt(x)-5\sqrt[3]{x)}
\int\:\frac{1}{\sqrt{x}-5\sqrt[3]{x}}dx
limit as x approaches 0 of 2/(3+4^{1/x)}
\lim\:_{x\to\:0}(\frac{2}{3+4^{\frac{1}{x}}})
area y=x^3+1,(-1,2)
area\:y=x^{3}+1,(-1,2)
(\partial)/(\partial x)(yx-ln(x^3y+6x))
\frac{\partial\:}{\partial\:x}(yx-\ln(x^{3}y+6x))
(\partial)/(\partial x)((x-y)e^{y+2x^2})
\frac{\partial\:}{\partial\:x}((x-y)e^{y+2x^{2}})
integral of e^{sin(x)}7cos(x)
\int\:e^{\sin(x)}7\cos(x)dx
derivative of-2/((1+x^2))
\frac{d}{dx}(-\frac{2}{(1+x)^{2}})
d/(d{x)}(({x}^2+{y}^2+{z}^2)^{(-1)/2})
\frac{d}{d{x}}(({x}^{2}+{y}^{2}+{z}^{2})^{\frac{-1}{2}})
limit as x approaches 0+of xln(x^5)
\lim\:_{x\to\:0+}(x\ln(x^{5}))
derivative of (x+3/(2x^2e^x))
\frac{d}{dx}(\frac{x+3}{2x^{2}e^{x}})
slope of x^2+y^2=27,\at x=3
slope\:x^{2}+y^{2}=27,\at\:x=3
integral of xsin(sqrt(x^2+4))
\int\:x\sin(\sqrt{x^{2}+4})dx
derivative of (sqrt(x)+1)^{81}
derivative\:(\sqrt{x}+1)^{81}
derivative of (e^{2x})/(ln(6x))
derivative\:\frac{e^{2x}}{\ln(6x)}
1
..
1080
1081
1082
1083
1084
..
2459