Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of f(x)=(2x^2-4)-1
derivative\:f(x)=(2x^{2}-4)-1
integral of (x+sin(x))
\int\:(x+\sin(x))dx
(d^2)/(dx^2)(e^{3e^x})
\frac{d^{2}}{dx^{2}}(e^{3e^{x}})
integral of e^xtan^4(e^x)
\int\:e^{x}\tan^{4}(e^{x})dx
derivative of 6/((2-x^4))
\frac{d}{dx}(\frac{6}{(2-x)^{4}})
integral of 1/(sqrt(3x^2-2))
\int\:\frac{1}{\sqrt{3x^{2}-2}}dx
(\partial)/(\partial y)(x^2-e^{y^2})
\frac{\partial\:}{\partial\:y}(x^{2}-e^{y^{2}})
sum from n=1 to infinity of n/(n+1)
\sum\:_{n=1}^{\infty\:}\frac{n}{n+1}
integral of-t^3
\int\:-t^{3}dt
(\partial)/(\partial y)(-z)
\frac{\partial\:}{\partial\:y}(-z)
derivative of sin(x+1+5x)
\frac{d}{dx}(\sin(x+1)+5x)
d/(dy)(3xe^{-1/(y^3)})
\frac{d}{dy}(3xe^{-\frac{1}{y^{3}}})
(\partial)/(\partial x)(6e^x)
\frac{\partial\:}{\partial\:x}(6e^{x})
integral of tan^{-3}(x)sec^2(x)sec^2(x)
\int\:\tan^{-3}(x)\sec^{2}(x)\sec^{2}(x)dx
limit as x approaches 0 of (sin(x^8))/x
\lim\:_{x\to\:0}(\frac{\sin(x^{8})}{x})
derivative of tan(e^{7t})+e^{tan(7t)}
derivative\:\tan(e^{7t})+e^{\tan(7t)}
(\partial)/(\partial x)(y/((2*sqrt(x*y))))
\frac{\partial\:}{\partial\:x}(\frac{y}{(2\cdot\:\sqrt{x\cdot\:y})})
tangent of y=e^{x/3},\at x=0
tangent\:y=e^{\frac{x}{3}},\at\:x=0
integral of cos^2((2x)/3)
\int\:\cos^{2}(\frac{2x}{3})dx
sum from n=0 to infinity of 2+e^{-3n}
\sum\:_{n=0}^{\infty\:}2+e^{-3n}
inverse oflaplace g(s)= 5/(s-3)
inverselaplace\:g(s)=\frac{5}{s-3}
derivative of-2xcos(x)
\frac{d}{dx}(-2x\cos(x))
5/2 y^4y^'=(sqrt(y^5+4))/(x^3)
\frac{5}{2}y^{4}y^{\prime\:}=\frac{\sqrt{y^{5}+4}}{x^{3}}
(2x+y)dx+(x+3y)dy=0
(2x+y)dx+(x+3y)dy=0
tangent of y=4x^2-x^3,(1,3)
tangent\:y=4x^{2}-x^{3},(1,3)
area e^x,e^{2x},ln(2),ln(4)
area\:e^{x},e^{2x},\ln(2),\ln(4)
(\partial)/(\partial x)(sqrt(8-3x^2-y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{8-3x^{2}-y^{2}})
integral of (x^2+2x-6)/(x^3-x)
\int\:\frac{x^{2}+2x-6}{x^{3}-x}dx
derivative of e^{x*ln(x})
\frac{d}{dx}(e^{x\cdot\:\ln(x)})
derivative of 1/(xln^2(x))
\frac{d}{dx}(\frac{1}{x\ln^{2}(x)})
tangent of y=tan(12x^2),\at x=sqrt(pi)
tangent\:y=\tan(12x^{2}),\at\:x=\sqrt{π}
derivative of (x^2)^2
derivative\:(x^{2})^{2}
derivative of sec^2(0)
derivative\:\sec^{2}(0)
sum from n=1 to infinity of 2/(n^6)
\sum\:_{n=1}^{\infty\:}\frac{2}{n^{6}}
integral of (x^4-3x^2+4x)/(5x)
\int\:\frac{x^{4}-3x^{2}+4x}{5x}dx
limit as x approaches infinity of (e^x)/(1-e^{-x)}
\lim\:_{x\to\:\infty\:}(\frac{e^{x}}{1-e^{-x}})
limit as x approaches 1+of 3/(x^3-1)
\lim\:_{x\to\:1+}(\frac{3}{x^{3}-1})
derivative of-9e^{x^{-9}}
derivative\:-9e^{x^{-9}}
integral of 1/(x(ln(2x)))
\int\:\frac{1}{x(\ln(2x))}dx
(40cos(20t-pi/2))^'
(40\cos(20t-\frac{π}{2}))^{\prime\:}
integral of te^{-7t}
\int\:te^{-7t}dt
limit as x approaches 2 of (2x)/(x^2-4)
\lim\:_{x\to\:2}(\frac{2x}{x^{2}-4})
integral of 1/(4+3x)
\int\:\frac{1}{4+3x}dx
(dy)/(dx)=e^{y+2x}
\frac{dy}{dx}=e^{y+2x}
y^{''}+y^'=2e^x+14
y^{\prime\:\prime\:}+y^{\prime\:}=2e^{x}+14
integral of 8x-2x^2
\int\:8x-2x^{2}dx
(\partial)/(\partial y)(cos(xy)-e^z+2)
\frac{\partial\:}{\partial\:y}(\cos(xy)-e^{z}+2)
(\partial)/(\partial y)(rcos(y))
\frac{\partial\:}{\partial\:y}(r\cos(y))
derivative of 4x^2-5x+4
\frac{d}{dx}(4x^{2}-5x+4)
derivative of f(x)=x^{4cos(x)}
derivative\:f(x)=x^{4\cos(x)}
limit as n approaches infinity of-10^n
\lim\:_{n\to\:\infty\:}(-10^{n})
limit as x approaches-3 of x/(x+5)
\lim\:_{x\to\:-3}(\frac{x}{x+5})
derivative of (x^2-3^3)
\frac{d}{dx}((x^{2}-3)^{3})
integral of (14)/((1-x^2)^{3/2)}
\int\:\frac{14}{(1-x^{2})^{\frac{3}{2}}}dx
integral of ln(x^6)
\int\:\ln(x^{6})dx
(dy)/(dt)=(3(y+1))/(t^2+5t+6)
\frac{dy}{dt}=\frac{3(y+1)}{t^{2}+5t+6}
derivative of 1/(\sqrt[3]{x^2+x+1})
\frac{d}{dx}(\frac{1}{\sqrt[3]{x^{2}+x+1}})
(dy)/(dx)=(x^4y^4+4x^4)/(y^3)
\frac{dy}{dx}=\frac{x^{4}y^{4}+4x^{4}}{y^{3}}
integral of 1/(x^3sqrt(4x^2-9))
\int\:\frac{1}{x^{3}\sqrt{4x^{2}-9}}dx
integral of csc^2(6θ)cot(6θ)
\int\:\csc^{2}(6θ)\cot(6θ)dθ
limit as x approaches infinity of x*x
\lim\:_{x\to\:\infty\:}(x\cdot\:x)
limit as x approaches 0 of (sin(15x))/x
\lim\:_{x\to\:0}(\frac{\sin(15x)}{x})
integral of e^{-0.1x}
\int\:e^{-0.1x}dx
tangent of x^3+y^3=9,(1,2)
tangent\:x^{3}+y^{3}=9,(1,2)
integral of sqrt((a^2-x^2))
\int\:\sqrt{(a^{2}-x^{2})}dx
derivative of (ln(x)/(x^{3/2)})
\frac{d}{dx}(\frac{\ln(x)}{x^{\frac{3}{2}}})
limit as x approaches 0-of 3-4/x
\lim\:_{x\to\:0-}(3-\frac{4}{x})
taylor x^3,-1
taylor\:x^{3},-1
integral of (e^{2x})/(5+e^x)
\int\:\frac{e^{2x}}{5+e^{x}}dx
f(x)=ln(x)-1/x
f(x)=\ln(x)-\frac{1}{x}
derivative of x^3(1-x)^{100}+x^4-5pi
derivative\:x^{3}(1-x)^{100}+x^{4}-5π
derivative of 3x^3-64x
\frac{d}{dx}(3x^{3}-64x)
limit as x approaches 1+of tan((pix)/2)
\lim\:_{x\to\:1+}(\tan(\frac{πx}{2}))
limit as x approaches 1/2 of x
\lim\:_{x\to\:\frac{1}{2}}(x)
derivative of-x*ln(x)
\frac{d}{dx}(-x\cdot\:\ln(x))
limit as x approaches 0 of (2.8^x-1)/x
\lim\:_{x\to\:0}(\frac{2.8^{x}-1}{x})
integral of 1/(2u)
\int\:\frac{1}{2u}du
121y^{''}+198y^'+65y=0
121y^{\prime\:\prime\:}+198y^{\prime\:}+65y=0
derivative of (x^2-6x+8)^4
derivative\:(x^{2}-6x+8)^{4}
(1+ln(x)+y/x)dx=(1-ln(x))dy
(1+\ln(x)+\frac{y}{x})dx=(1-\ln(x))dy
derivative of 7-4e^{-x}
\frac{d}{dx}(7-4e^{-x})
(-(q^4)/4+(2q^3)/3+(11q^2)/2-12q)^'
(-\frac{q^{4}}{4}+\frac{2q^{3}}{3}+\frac{11q^{2}}{2}-12q)^{\prime\:}
3e^{6x}(dy)/(dx)=-36 x/(y^2)
3e^{6x}\frac{dy}{dx}=-36\frac{x}{y^{2}}
integral from 1/5 to 7 of 6xln(5x)
\int\:_{\frac{1}{5}}^{7}6x\ln(5x)dx
derivative of f(x)=(x^2-9)^2
derivative\:f(x)=(x^{2}-9)^{2}
(dy)/(dx)=(3y^2cot(x)+sin(x)cos(x))/(2y)
\frac{dy}{dx}=\frac{3y^{2}\cot(x)+\sin(x)\cos(x)}{2y}
limit as x approaches 10 of 8/((x-10)^2)
\lim\:_{x\to\:10}(\frac{8}{(x-10)^{2}})
derivative of (2x+1/(2x-1))
\frac{d}{dx}(\frac{2x+1}{2x-1})
(10xe^x-5xy)dx+(2xy-5x^2)dy=0
(10xe^{x}-5xy)dx+(2xy-5x^{2})dy=0
x^2y^{''}-2y=3x^2-1
x^{2}y^{\prime\:\prime\:}-2y=3x^{2}-1
derivative of y=ln(2-9x)
derivative\:y=\ln(2-9x)
derivative of cos(3x^5+1)
\frac{d}{dx}(\cos(3x^{5}+1))
limit as x approaches infinity of x^2+y
\lim\:_{x\to\:\infty\:}(x^{2}+y)
xy^'+3y=(e^x)/x
xy^{\prime\:}+3y=\frac{e^{x}}{x}
integral of 1/((x^2-36)^2)
\int\:\frac{1}{(x^{2}-36)^{2}}dx
integral of xsin(3x+2)
\int\:x\sin(3x+2)dx
derivative of e^{(x-1^2})
\frac{d}{dx}(e^{(x-1)^{2}})
integral of ((e^{2x}))/(25+e^{4x)}
\int\:\frac{(e^{2x})}{25+e^{4x}}dx
integral of e^xsqrt(7+e^x)
\int\:e^{x}\sqrt{7+e^{x}}dx
integral of-1/262144 cos(8x)
\int\:-\frac{1}{262144}\cos(8x)dx
1
..
1480
1481
1482
1483
1484
..
2459