Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 6x^5-2x^4-9x^2
\int\:6x^{5}-2x^{4}-9x^{2}dx
tangent of 4x^2-3x-5
tangent\:4x^{2}-3x-5
integral of ((x^2+1)^2)/(x^2)
\int\:\frac{(x^{2}+1)^{2}}{x^{2}}dx
integral of cos(x)(e^{7sin(x)})
\int\:\cos(x)(e^{7\sin(x)})dx
tangent of ((-8x))/(sqrt(2x-1))
tangent\:\frac{(-8x)}{\sqrt{2x-1}}
y^'=(2xy^2+8x)/((x^2y+3y))
y^{\prime\:}=\frac{2xy^{2}+8x}{(x^{2}y+3y)}
limit as x approaches 0+of (e^x-1)^x
\lim\:_{x\to\:0+}((e^{x}-1)^{x})
integral of t(ln(t))^2
\int\:t(\ln(t))^{2}dt
limit as x approaches 0-of 5/(tan(x))
\lim\:_{x\to\:0-}(\frac{5}{\tan(x)})
integral of e^{-x}*x^2
\int\:e^{-x}\cdot\:x^{2}dx
derivative of arcsin(1/t)
derivative\:\arcsin(\frac{1}{t})
(\partial)/(\partial x)(e^{-7x}cos(3pit))
\frac{\partial\:}{\partial\:x}(e^{-7x}\cos(3πt))
tangent of 10-2e^x
tangent\:10-2e^{x}
derivative of sin(4x-5)
\frac{d}{dx}(\sin(4x-5))
(x/(sin(y))+2)dx+((x^2+1)cos(y))/(cos(2y)-1)dy=0
(\frac{x}{\sin(y)}+2)dx+\frac{(x^{2}+1)\cos(y)}{\cos(2y)-1}dy=0
integral of e^{6x+e^{6x}}
\int\:e^{6x+e^{6x}}dx
slope of (-4.4)(-6.6)
slope\:(-4.4)(-6.6)
integral of (x+4)^3
\int\:(x+4)^{3}dx
(\partial)/(\partial x)(2x^2cos(xy))
\frac{\partial\:}{\partial\:x}(2x^{2}\cos(xy))
tangent of f(x)=(x^2+36)(2x+21),\at x=-4
tangent\:f(x)=(x^{2}+36)(2x+21),\at\:x=-4
integral of (cosh(x))/(sinh(x))
\int\:\frac{\cosh(x)}{\sinh(x)}dx
limit as x approaches 0+of 2/(3x^{1/3)}
\lim\:_{x\to\:0+}(\frac{2}{3x^{\frac{1}{3}}})
derivative of f(x)=-4x^2
derivative\:f(x)=-4x^{2}
(\partial)/(\partial y)(xe^{2x-3y})
\frac{\partial\:}{\partial\:y}(xe^{2x-3y})
limit as x approaches 0 of (sin(4x)cos(3x))/(7x)
\lim\:_{x\to\:0}(\frac{\sin(4x)\cos(3x)}{7x})
limit as x approaches 0 of x^{x^3}
\lim\:_{x\to\:0}(x^{x^{3}})
limit as x approaches 1 of 3x-4
\lim\:_{x\to\:1}(3x-4)
derivative of e^{x^4+9x}
derivative\:e^{x^{4}+9x}
implicit (dy)/(dx),5cos(xy)=6x+7y
implicit\:\frac{dy}{dx},5\cos(xy)=6x+7y
integral of sin(2x)+cos(2x)
\int\:\sin(2x)+\cos(2x)dx
area x=y-y^2,x=y^2-3
area\:x=y-y^{2},x=y^{2}-3
y^{''}-4y^'-45y=0
y^{\prime\:\prime\:}-4y^{\prime\:}-45y=0
integral of cos^4(3t)
\int\:\cos^{4}(3t)dt
integral from-pi to pi of x
\int\:_{-π}^{π}xdx
derivative of ((x^2)/(5+8x))
\frac{d}{dx}(\frac{(x^{2})}{5+8x})
derivative of (20/(x^6))
\frac{d}{dx}(\frac{20}{x^{6}})
(d^2y)/(dx^2)+5(dy)/(dx)+6y=12e^x
\frac{d^{2}y}{dx^{2}}+5\frac{dy}{dx}+6y=12e^{x}
sum from n=1 to infinity of (5+n)/(n!)
\sum\:_{n=1}^{\infty\:}\frac{5+n}{n!}
y^'+100y=0
y^{\prime\:}+100y=0
sum from n=1 to infinity of 2^n*3^{-n}
\sum\:_{n=1}^{\infty\:}2^{n}\cdot\:3^{-n}
y=3cos(x^2-1)
y=3\cos(x^{2}-1)
integral of sqrt(6x+5)
\int\:\sqrt{6x+5}dx
implicit sin(y)=5x^3-5
implicit\:\sin(y)=5x^{3}-5
tangent of f(x)=x^2-x+1,\at x=-1
tangent\:f(x)=x^{2}-x+1,\at\:x=-1
limit as h approaches 0 of 6x+3h
\lim\:_{h\to\:0}(6x+3h)
derivative of 1+sqrt(2x)
\frac{d}{dx}(1+\sqrt{2x})
(\partial)/(\partial x)(xy^2+x)
\frac{\partial\:}{\partial\:x}(xy^{2}+x)
(dy)/(dx)-yx-y^2=0
\frac{dy}{dx}-yx-y^{2}=0
integral of 2/(v^2)
\int\:\frac{2}{v^{2}}dv
(sin^3(x))^'
(\sin^{3}(x))^{\prime\:}
derivative of y=9arctan(x+sqrt(1+x^2))
derivative\:y=9\arctan(x+\sqrt{1+x^{2}})
((ln(x))^2)^'
((\ln(x))^{2})^{\prime\:}
limit as x approaches-8 of (8-|x|)/(8+x)
\lim\:_{x\to\:-8}(\frac{8-\left|x\right|}{8+x})
integral of (14)/(x^2-1)
\int\:\frac{14}{x^{2}-1}dx
derivative of ln(x^2-12x)
\frac{d}{dx}(\ln(x^{2}-12x))
integral of 4sin^5(x)cos(x)
\int\:4\sin^{5}(x)\cos(x)dx
integral from 1 to 4 of-4sqrt(t)ln(t)
\int\:_{1}^{4}-4\sqrt{t}\ln(t)dt
derivative of-235
\frac{d}{dx}(-235)
derivative of sin(x^4)
derivative\:\sin(x^{4})
derivative of y=9^{5^{x^2}}
derivative\:y=9^{5^{x^{2}}}
area y=2,y=2sin(x),[0, pi/2 ]
area\:y=2,y=2\sin(x),[0,\frac{π}{2}]
(\partial)/(\partial z)(x/(x^2+y^2+z^2))
\frac{\partial\:}{\partial\:z}(\frac{x}{x^{2}+y^{2}+z^{2}})
implicit (dy)/(dx),x^8+y^7=5
implicit\:\frac{dy}{dx},x^{8}+y^{7}=5
(e^{3t})^'
(e^{3t})^{\prime\:}
integral of-7/(x^2)-4
\int\:-\frac{7}{x^{2}}-4dx
integral of (3t^4-t^3+6t^2)/(t^4)
\int\:\frac{3t^{4}-t^{3}+6t^{2}}{t^{4}}dt
csc(y)dx+sec^2(x)dy=0
\csc(y)dx+\sec^{2}(x)dy=0
integral of et
\int\:etdt
limit as x approaches 0 of (|x|)/(x^2)
\lim\:_{x\to\:0}(\frac{\left|x\right|}{x^{2}})
integral of 1/(a+bsqrt(x))
\int\:\frac{1}{a+b\sqrt{x}}dx
integral of 1/(7+x^2)
\int\:\frac{1}{7+x^{2}}dx
(e^x+1)(dy)/(dx)=y-ye^x
(e^{x}+1)\frac{dy}{dx}=y-ye^{x}
limit as x approaches 0 of (cot(x))/x
\lim\:_{x\to\:0}(\frac{\cot(x)}{x})
tangent of y=3-2x^2,(-4,-29)
tangent\:y=3-2x^{2},(-4,-29)
integral of-1/(x^2)
\int\:-\frac{1}{x^{2}}dx
limit as x approaches-infinity of (x)^2
\lim\:_{x\to\:-\infty\:}((x)^{2})
integral of \sqrt[3]{8-7x^2}(-14x)
\int\:\sqrt[3]{8-7x^{2}}(-14x)dx
integral of sqrt(37)
\int\:\sqrt{37}
derivative of g(x)=3x^4
derivative\:g(x)=3x^{4}
tangent of f(x)= 3/x ,(5, 3/5)
tangent\:f(x)=\frac{3}{x},(5,\frac{3}{5})
integral of x^4e^{7x}
\int\:x^{4}e^{7x}dx
integral of (x^2-3)/(x(x^2-1))
\int\:\frac{x^{2}-3}{x(x^{2}-1)}dx
integral from 0 to pi of 4sec^2(x/4)
\int\:_{0}^{π}4\sec^{2}(\frac{x}{4})dx
(\partial)/(\partial x)(2x^3cos(xy))
\frac{\partial\:}{\partial\:x}(2x^{3}\cos(xy))
limit as x approaches 0 of 1/(3^x)
\lim\:_{x\to\:0}(\frac{1}{3^{x}})
derivative of f(x)=x^3+5x+7
derivative\:f(x)=x^{3}+5x+7
inverse oflaplace 4/(s^2+2s+4)
inverselaplace\:\frac{4}{s^{2}+2s+4}
derivative of 1/(ln(x+sqrt(1+x^2)))
\frac{d}{dx}(\frac{1}{\ln(x+\sqrt{1+x^{2}})})
(\partial)/(\partial s)(-(sqrt(s^2+t^2)))
\frac{\partial\:}{\partial\:s}(-(\sqrt{s^{2}+t^{2}}))
integral from 1 to e of ln(13x)
\int\:_{1}^{e}\ln(13x)dx
integral of e^{1-8t}
\int\:e^{1-8t}dt
(\partial)/(\partial u)(1/4 (u-v))
\frac{\partial\:}{\partial\:u}(\frac{1}{4}(u-v))
f(x)=(5^{4x^3}+e^{2x^3})/(12)
f(x)=\frac{5^{4x^{3}}+e^{2x^{3}}}{12}
derivative of (3x^2+6xsin(x))
\frac{d}{dx}((3x^{2}+6x)\sin(x))
integral of 9x^2e^{2x}
\int\:9x^{2}e^{2x}dx
limit as t approaches 0 of I(t)nt
\lim\:_{t\to\:0}(I(t)nt)
integral from 2 to infinity of-2x^{-2}
\int\:_{2}^{\infty\:}-2x^{-2}dx
derivative of 2/(sqrt(4x-3))
\frac{d}{dx}(\frac{2}{\sqrt{4x-3}})
integral of (t^3)/(sqrt(a^4+t^4))
\int\:\frac{t^{3}}{\sqrt{a^{4}+t^{4}}}dt
derivative of arctan(7x)
\frac{d}{dx}(\arctan(7x))
1
..
1502
1503
1504
1505
1506
..
2459