Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(dy)/(dx)=(x-1)/(y^3)
\frac{dy}{dx}=\frac{x-1}{y^{3}}
limit as x approaches+2 of ((1))/((x+2))
\lim\:_{x\to\:+2}(\frac{(1)}{(x+2)})
derivative of (e^{2x}^2)
\frac{d}{dx}((e^{2x})^{2})
derivative of (4-x/(5x))
\frac{d}{dx}(\frac{4-x}{5x})
integral of ((ln(x))^{32})/x
\int\:\frac{(\ln(x))^{32}}{x}dx
limit as x approaches 2 of 2x^4-10
\lim\:_{x\to\:2}(2x^{4}-10)
(\partial)/(\partial y)(y^5-3xy)
\frac{\partial\:}{\partial\:y}(y^{5}-3xy)
(d^2)/(dx^2)(ln(x^2+3x+15))
\frac{d^{2}}{dx^{2}}(\ln(x^{2}+3x+15))
f(x)=8ln(x)
f(x)=8\ln(x)
integral of 3x^2sqrt(x^3-2)
\int\:3x^{2}\sqrt{x^{3}-2}dx
y^'+3xy-3=0
y^{\prime\:}+3xy-3=0
limit as x approaches 1 of 3x^2-7x+1
\lim\:_{x\to\:1}(3x^{2}-7x+1)
integral from 0 to 1 of 2e^{-2x}
\int\:_{0}^{1}2e^{-2x}dx
derivative of-sin(x)+cos(x)+x-1/(x^2)
derivative\:-\sin(x)+\cos(x)+x-\frac{1}{x^{2}}
derivative of x^3-6x^2+8x
\frac{d}{dx}(x^{3}-6x^{2}+8x)
y^{''}+4y=8x^2
y^{\prime\:\prime\:}+4y=8x^{2}
tangent of x^3+y^3=9
tangent\:x^{3}+y^{3}=9
integral of (7x^2)ex^3+1
\int\:(7x^{2})ex^{3}+1dx
f(x)=-4sin(4x)
f(x)=-4\sin(4x)
slope ofintercept (-4,-2),(5,-7)
slopeintercept\:(-4,-2),(5,-7)
tangent of y=x+6/x ,(3,5)
tangent\:y=x+\frac{6}{x},(3,5)
derivative of 92x-(x^2)/(100)
derivative\:92x-\frac{x^{2}}{100}
(\partial)/(\partial y)(x/(4+y))
\frac{\partial\:}{\partial\:y}(\frac{x}{4+y})
81y^{''}+180y^'+125y=0,y(3)=6,y^'(3)=6
81y^{\prime\:\prime\:}+180y^{\prime\:}+125y=0,y(3)=6,y^{\prime\:}(3)=6
derivative of 8cos^2(x)
\frac{d}{dx}(8\cos^{2}(x))
area 2x^3-6x^2-2x+6,-x^3+3x^2+x-3
area\:2x^{3}-6x^{2}-2x+6,-x^{3}+3x^{2}+x-3
area y=5cos(7x),y=5-5cos(7x)
area\:y=5\cos(7x),y=5-5\cos(7x)
integral from 0 to pi/(16) of cos(8x)
\int\:_{0}^{\frac{π}{16}}\cos(8x)dx
integral from 0 to 4 of pi((20-5x)/4)^2
\int\:_{0}^{4}π(\frac{20-5x}{4})^{2}dx
derivative of y=4x^2+1
derivative\:y=4x^{2}+1
integral of 2x^3e^{x^2}
\int\:2x^{3}e^{x^{2}}dx
derivative of x+y-1
\frac{d}{dx}(x+y-1)
integral of (1/(2sqrt(x)))
\int\:(\frac{1}{2\sqrt{x}})dx
area y=sqrt(3x),x=0,x=4
area\:y=\sqrt{3x},x=0,x=4
derivative of 2^y
derivative\:2^{y}
tangent of f(x)=(2x-1)^3,\at x=1
tangent\:f(x)=(2x-1)^{3},\at\:x=1
integral of x^{-2}e^{-x}
\int\:x^{-2}e^{-x}dx
y^{''}+10y^'+34y=0
y^{\prime\:\prime\:}+10y^{\prime\:}+34y=0
xdy-ydx=2x^2y^2dy,y(1)=2
xdy-ydx=2x^{2}y^{2}dy,y(1)=2
derivative of cos(2xcos(x))
\frac{d}{dx}(\cos(2x)\cos(x))
integral of (8-3x)/(sqrt(25-64x^2))
\int\:\frac{8-3x}{\sqrt{25-64x^{2}}}dx
derivative of (x-3)(x^2+6)
derivative\:(x-3)(x^{2}+6)
(\partial)/(\partial x)(8xcos(x)cos(y))
\frac{\partial\:}{\partial\:x}(8x\cos(x)\cos(y))
limit as x approaches 1 of (|x|)/x
\lim\:_{x\to\:1}(\frac{\left|x\right|}{x})
limit as x approaches 0 of h(1/x)
\lim\:_{x\to\:0}(h(\frac{1}{x}))
integral of e^θsin(3θ)
\int\:e^{θ}\sin(3θ)dθ
integral of 5x^3e^{x^4}
\int\:5x^{3}e^{x^{4}}dx
d/(dt)(5/(5-t))
\frac{d}{dt}(\frac{5}{5-t})
tangent of x^2y^2=4,(-1,2)
tangent\:x^{2}y^{2}=4,(-1,2)
integral of sqrt(4-25x^2)
\int\:\sqrt{4-25x^{2}}dx
derivative of ln(x/4+(x-4)/x)
\frac{d}{dx}(\ln(\frac{x}{4})+\frac{x-4}{x})
derivative of f(x)=(x^2-10x+25)/(x-5)
derivative\:f(x)=\frac{x^{2}-10x+25}{x-5}
slope of (9.11)(-8.9)
slope\:(9.11)(-8.9)
(\partial)/(\partial x)(4yx)
\frac{\partial\:}{\partial\:x}(4yx)
integral of (4e^{2x}+2e^x)/(1+e^{2x)}
\int\:\frac{4e^{2x}+2e^{x}}{1+e^{2x}}dx
derivative of 4x-3x^2
\frac{d}{dx}(4x-3x^{2})
integral of 5x^5e^{-x^3}
\int\:5x^{5}e^{-x^{3}}dx
integral of x(20x^2+60x)
\int\:x(20x^{2}+60x)dx
inverse oflaplace (5+5s)/(s^2+25)
inverselaplace\:\frac{5+5s}{s^{2}+25}
tangent of x^4+2e^x
tangent\:x^{4}+2e^{x}
integral of sin(24x)
\int\:\sin(24x)dx
integral from 0 to 2 of sqrt(1+x)
\int\:_{0}^{2}\sqrt{1+x}dx
derivative of x/(1-\frac{1){x^2}}
derivative\:\frac{x}{1-\frac{1}{x^{2}}}
integral of 3(3x+9)^5
\int\:3(3x+9)^{5}dx
(t^2+2t)(dx)/(dt)=2x+7,x(1)=1
(t^{2}+2t)\frac{dx}{dt}=2x+7,x(1)=1
limit as x approaches infinity of \sqrt[x]{2+5^x}
\lim\:_{x\to\:\infty\:}(\sqrt[x]{2+5^{x}})
integral from 1 to 5 of |x^2-6x+8|
\int\:_{1}^{5}\left|x^{2}-6x+8\right|dx
integral of 7x^4-5x^3+5x^2+C
\int\:7x^{4}-5x^{3}+5x^{2}+Cdx
area 7/x ,x=1,x=41
area\:\frac{7}{x},x=1,x=41
limit as x approaches-7-of x^2+7
\lim\:_{x\to\:-7-}(x^{2}+7)
(dy)/(dx)=2+2y+x+xy
\frac{dy}{dx}=2+2y+x+xy
derivative of f(x)=cx^{-2}
derivative\:f(x)=cx^{-2}
(\partial)/(\partial y)(xy+x^2)
\frac{\partial\:}{\partial\:y}(xy+x^{2})
xy^'=y+x^2sin(x),y(pi/4)=0
xy^{\prime\:}=y+x^{2}\sin(x),y(\frac{π}{4})=0
derivative of 1/2 e^{1/2 x}
\frac{d}{dx}(\frac{1}{2}e^{\frac{1}{2}x})
limit as x approaches+3 of 8/(x-3)
\lim\:_{x\to\:+3}(\frac{8}{x-3})
area 5x, 5/x ,0,5
area\:5x,\frac{5}{x},0,5
integral from 0 to pi/4 of 6tan^3(x)
\int\:_{0}^{\frac{π}{4}}6\tan^{3}(x)dx
(\partial)/(\partial y)((2x-y+5)^2)
\frac{\partial\:}{\partial\:y}((2x-y+5)^{2})
derivative of f(x)=(4x^2-5x)e^x
derivative\:f(x)=(4x^{2}-5x)e^{x}
integral of 5e^{-4x}
\int\:5e^{-4x}dx
derivative of arcsin(9/(x^2))
\frac{d}{dx}(\arcsin(\frac{9}{x^{2}}))
derivative of ((4x)/(x^2+1))^{1/4}
derivative\:(\frac{4x}{x^{2}+1})^{\frac{1}{4}}
derivative of f(x)=4x+2
derivative\:f(x)=4x+2
integral of ((y))/((1+y^{(2)))}
\int\:\frac{(y)}{(1+y^{(2)})}dy
y^{''}+y^'-6y=0,y(0)=2,y^'(0)=-1
y^{\prime\:\prime\:}+y^{\prime\:}-6y=0,y(0)=2,y^{\prime\:}(0)=-1
(5t+2y+6)dt-dy=0
(5t+2y+6)dt-dy=0
derivative of (dy/(dx))+1=0
\frac{d}{dx}(\frac{dy}{dx})+1=0
integral of sqrt((x^3+1)/(x^3)) 1/(x^4)
\int\:\sqrt{\frac{x^{3}+1}{x^{3}}}\frac{1}{x^{4}}dx
f(y)=ln(y)
f(y)=\ln(y)
integral from 0 to sqrt(ln(pi) of)2xe^{x^2}sin(e^{x^2})
\int\:_{0}^{\sqrt{\ln(π)}}2xe^{x^{2}}\sin(e^{x^{2}})dx
derivative of ln((tan(sqrt(x))^3))
\frac{d}{dx}(\ln((\tan(\sqrt{x}))^{3}))
derivative of x^2-5x-6
\frac{d}{dx}(x^{2}-5x-6)
d/(du)((u-sqrt(u))(u+sqrt(u)))
\frac{d}{du}((u-\sqrt{u})(u+\sqrt{u}))
(\partial)/(\partial x)(1/(1-x/a-y/b))
\frac{\partial\:}{\partial\:x}(\frac{1}{1-\frac{x}{a}-\frac{y}{b}})
integral of 1/12 x
\int\:\frac{1}{12}xdx
derivative of sin(0.5x)
derivative\:\sin(0.5x)
y^'=x+8y
y^{\prime\:}=x+8y
(dy)/(dt)-y=1,y(0)=1
\frac{dy}{dt}-y=1,y(0)=1
integral of 1/(25-4x^2)
\int\:\frac{1}{25-4x^{2}}dx
1
..
362
363
364
365
366
..
2459