Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
4y^{''}+2y^'+2y=0
4y^{\prime\:\prime\:}+2y^{\prime\:}+2y=0
tangent of y=cos(x),\at x= pi/2
tangent\:y=\cos(x),\at\:x=\frac{π}{2}
derivative of x+xsqrt(x)
\frac{d}{dx}(x+x\sqrt{x})
derivative of x^3+3^x
\frac{d}{dx}(x^{3}+3^{x})
integral of sin(x)2x
\int\:\sin(x)2xdx
limit as x approaches infinity of ((x^2))/(e^{x^2)}
\lim\:_{x\to\:\infty\:}(\frac{(x^{2})}{e^{x^{2}}})
sum from n=0 to infinity of (1^n)/(3^n)
\sum\:_{n=0}^{\infty\:}\frac{1^{n}}{3^{n}}
integral of-(4x+10)/(x^3)
\int\:-\frac{4x+10}{x^{3}}dx
limit as x approaches 0-of 4/(tan(x))
\lim\:_{x\to\:0-}(\frac{4}{\tan(x)})
integral of e^{-st}*t
\int\:e^{-st}\cdot\:tdt
derivative of 9arcsec(x)
derivative\:9\arcsec(x)
(\partial)/(\partial y)(xy(1/(y^3)+2))
\frac{\partial\:}{\partial\:y}(xy(\frac{1}{y^{3}}+2))
integral of 1/4 e^{4x+1}
\int\:\frac{1}{4}e^{4x+1}dx
tangent of-x^2+80x-600
tangent\:-x^{2}+80x-600
derivative of sin^2(pix)
derivative\:\sin^{2}(πx)
integral of (24x-2x^3)/(x^4-16)
\int\:\frac{24x-2x^{3}}{x^{4}-16}dx
derivative of 8/(sqrt(x)-4/x)
\frac{d}{dx}(\frac{8}{\sqrt{x}}-\frac{4}{x})
(\partial)/(\partial y)(yz-ln(x+z))
\frac{\partial\:}{\partial\:y}(yz-\ln(x+z))
limit as x approaches 2 of 3x^2+1
\lim\:_{x\to\:2}(3x^{2}+1)
derivative of y=300(1.056)^x
derivative\:y=300(1.056)^{x}
(\partial)/(\partial x)(3x^2+2xy^2+1)
\frac{\partial\:}{\partial\:x}(3x^{2}+2xy^{2}+1)
sum from n=1 to infinity of 5/(pi^2)
\sum\:_{n=1}^{\infty\:}\frac{5}{π^{2}}
tangent of f(x)= 3/x ,(7, 3/7)
tangent\:f(x)=\frac{3}{x},(7,\frac{3}{7})
tangent of y= 2/(1+x^2),(2,0.4)
tangent\:y=\frac{2}{1+x^{2}},(2,0.4)
xy^'-y+xy^4=0
xy^{\prime\:}-y+xy^{4}=0
maclaurin x/(2x+1)
maclaurin\:\frac{x}{2x+1}
derivative of f(x)=(9\sqrt[3]{x^5})/5
derivative\:f(x)=\frac{9\sqrt[3]{x^{5}}}{5}
integral of e^{(x+y)}
\int\:e^{(x+y)}
xy^2y^'=x+8
xy^{2}y^{\prime\:}=x+8
integral of (2x)/(sqrt(4x^4-9))
\int\:\frac{2x}{\sqrt{4x^{4}-9}}dx
integral of (6x+1)(6x^2+2x)^{3/4}
\int\:(6x+1)(6x^{2}+2x)^{\frac{3}{4}}dx
derivative of 5/(x+8)
\frac{d}{dx}(\frac{5}{x+8})
area y=3x,y= 3/x ,x=4
area\:y=3x,y=\frac{3}{x},x=4
integral of-sin(1/2 x)
\int\:-\sin(\frac{1}{2}x)dx
derivative of f(x)=6cos(x)
derivative\:f(x)=6\cos(x)
integral of (tan^2(x))/(cos^2(x))
\int\:\frac{\tan^{2}(x)}{\cos^{2}(x)}dx
tangent of f(x)=3x^3,(-1,-3)
tangent\:f(x)=3x^{3},(-1,-3)
derivative of xe-x
\frac{d}{dx}(xe-x)
derivative of e^pi
\frac{d}{dx}(e^{π})
derivative of y=-8-(x/7)^{5/2}
derivative\:y=-8-(\frac{x}{7})^{\frac{5}{2}}
derivative of 4^{3sin(x-e^x})
\frac{d}{dx}(4^{3\sin(x)-e^{x}})
derivative of (3P+8)^7
derivative\:(3P+8)^{7}
y^{''}=6.1e^{(-2.7t)}
y^{\prime\:\prime\:}=6.1e^{(-2.7t)}
tangent of ln(x^2-24)=x-y+6,(-5,1)
tangent\:\ln(x^{2}-24)=x-y+6,(-5,1)
integral of (x^2-5x+5)
\int\:(x^{2}-5x+5)dx
y^{''}+y=-sin(2t)
y^{\prime\:\prime\:}+y=-\sin(2t)
derivative of 5/(4x-3)
\frac{d}{dx}(\frac{5}{4x-3})
integral of 2(sin(x)-cos(x)+1)
\int\:2(\sin(x)-\cos(x)+1)dx
derivative of tan(5sqrt(x))
derivative\:\tan(5\sqrt{x})
integral of (cos(4x))/2
\int\:\frac{\cos(4x)}{2}dx
integral of sec(x)tan(x)(x/pi)
\int\:\sec(x)\tan(x)(\frac{x}{π})dx
(dy)/(dt)+y=cos(2t),y(0)=5
\frac{dy}{dt}+y=\cos(2t),y(0)=5
(dy)/(dx)= 1/(xy)
\frac{dy}{dx}=\frac{1}{xy}
derivative of f(x)=xsqrt(x^3-6)
derivative\:f(x)=x\sqrt{x^{3}-6}
derivative of y=2x^2sqrt(2-x)
derivative\:y=2x^{2}\sqrt{2-x}
(\partial)/(\partial x)(e^{-1}cos(pix))
\frac{\partial\:}{\partial\:x}(e^{-1}\cos(πx))
(dx}{dt}=\frac{2x)/t ,x(3)=1
\frac{dx}{dt}=\frac{2x}{t},x(3)=1
tangent of f(x)=5e^x+3x,(0,5)
tangent\:f(x)=5e^{x}+3x,(0,5)
laplacetransform 10+t^2
laplacetransform\:10+t^{2}
(\partial)/(\partial z)(-ye^{z^3+z^2+1})
\frac{\partial\:}{\partial\:z}(-ye^{z^{3}+z^{2}+1})
integral from 0 to pi of sin^2(7x)
\int\:_{0}^{π}\sin^{2}(7x)dx
sum from n=1 to infinity of (3^n)/(n^2)
\sum\:_{n=1}^{\infty\:}\frac{3^{n}}{n^{2}}
integral of-sec^2(x)
\int\:-\sec^{2}(x)dx
integral of (t^2+1)/(sqrt(t))
\int\:\frac{t^{2}+1}{\sqrt{t}}dt
integral of 3/(x^{1/2)}
\int\:\frac{3}{x^{\frac{1}{2}}}dx
sum from n=0 to infinity of 2
\sum\:_{n=0}^{\infty\:}2
integral from 0 to 2 of (8t)/((t-3)^2)
\int\:_{0}^{2}\frac{8t}{(t-3)^{2}}dt
derivative of (x-1/3)
\frac{d}{dx}(\frac{x-1}{3})
tangent of (6x)/(x^2+1)(1.3)
tangent\:\frac{6x}{x^{2}+1}(1.3)
derivative of (7x)/((x^3-2)^2)
derivative\:\frac{7x}{(x^{3}-2)^{2}}
integral of-(cos(2x))/4
\int\:-\frac{\cos(2x)}{4}dx
(dy)/(dx)= 2/3 y
\frac{dy}{dx}=\frac{2}{3}y
limit as x approaches 4 of x+1
\lim\:_{x\to\:4}(x+1)
(\partial)/(\partial x)(ln(4x^2+y^2+8))
\frac{\partial\:}{\partial\:x}(\ln(4x^{2}+y^{2}+8))
derivative of (4x^{3/2}-2x^{1/2}^3)
\frac{d}{dx}((4x^{\frac{3}{2}}-2x^{\frac{1}{2}})^{3})
derivative of w(z)=7-z
derivative\:w(z)=7-z
10y^{''}+11y^'=5cos(4t)
10y^{\prime\:\prime\:}+11y^{\prime\:}=5\cos(4t)
integral of tan(2x)sqrt(sec^5(2x))
\int\:\tan(2x)\sqrt{\sec^{5}(2x)}dx
derivative of (4/5 x^4)
\frac{d}{dx}((\frac{4}{5}x)^{4})
integral of 4sec^2(2x)tan(2x)
\int\:4\sec^{2}(2x)\tan(2x)dx
derivative of sqrt(100-h^2)
derivative\:\sqrt{100-h^{2}}
derivative of (sqrt(a)-sqrt(x)^2)
\frac{d}{dx}((\sqrt{a}-\sqrt{x})^{2})
y^'-2xy=x
y^{\prime\:}-2xy=x
integral of cos^5(x
\int\:\cos^{5}(d)xdx
integral of (10)/(1-sin^2(x))
\int\:\frac{10}{1-\sin^{2}(x)}dx
integral of (x^3-3x^2+2x+1)
\int\:(x^{3}-3x^{2}+2x+1)dx
integral of (2x^3+5x^2-2x)/x
\int\:\frac{2x^{3}+5x^{2}-2x}{x}dx
limit as x approaches 0 of cos(5x)
\lim\:_{x\to\:0}(\cos(5x))
derivative of r(t)-4tan(5t^3)
derivative\:r(t)-4\tan(5t^{3})
limit as x approaches 2 of ((1))/((x+2))
\lim\:_{x\to\:2}(\frac{(1)}{(x+2)})
derivative of y=x^2sin(4x)
derivative\:y=x^{2}\sin(4x)
tangent of f(x)=x^2+x,\at x=4
tangent\:f(x)=x^{2}+x,\at\:x=4
y^{''}+4y^'+4y=0,y(0)=0,y^'(0)=1
y^{\prime\:\prime\:}+4y^{\prime\:}+4y=0,y(0)=0,y^{\prime\:}(0)=1
derivative of (-6x/(x^2+1))
\frac{d}{dx}(\frac{-6x}{x^{2}+1})
9x^2y^'=y^'+5xe^{-y}
9x^{2}y^{\prime\:}=y^{\prime\:}+5xe^{-y}
(dy)/(dx)=x*e^{-2x}
\frac{dy}{dx}=x\cdot\:e^{-2x}
integral of (x-1)/((x+1)(2x^2+3))
\int\:\frac{x-1}{(x+1)(2x^{2}+3)}dx
(d^2y)/(dx^2)+y=csc(x)
\frac{d^{2}y}{dx^{2}}+y=\csc(x)
(\partial)/(\partial x)(2x^2e^y+cos(xy))
\frac{\partial\:}{\partial\:x}(2x^{2}e^{y}+\cos(xy))
area y=x^2,(0,4)
area\:y=x^{2},(0,4)
1
..
401
402
403
404
405
..
2459