Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of f(x)=sqrt(x-1),(17,4)
tangent\:f(x)=\sqrt{x-1},(17,4)
sum from n=0 to infinity of 4-sin(n)
\sum\:_{n=0}^{\infty\:}4-\sin(n)
integral from 0 to 2 of 1/(e^{pix)}
\int\:_{0}^{2}\frac{1}{e^{πx}}dx
(dy)/(dx)+4y=e^{-4x}
\frac{dy}{dx}+4y=e^{-4x}
(\partial)/(\partial x)(3x^2-3)
\frac{\partial\:}{\partial\:x}(3x^{2}-3)
derivative of a^2arcsin(x/a)
\frac{d}{dx}(a^{2}\arcsin(\frac{x}{a}))
integral of (x-1)/(x^2(x+1)^2)
\int\:\frac{x-1}{x^{2}(x+1)^{2}}dx
y^2dy+x^3dx=0
y^{2}dy+x^{3}dx=0
tangent of f(x)= 7/(x^2)-6x^2,\at x=5
tangent\:f(x)=\frac{7}{x^{2}}-6x^{2},\at\:x=5
derivative of sqrt(2x^2+1)
\frac{d}{dx}(\sqrt{2x^{2}+1})
integral of ((1-x))/(e^x)k
\int\:\frac{(1-x)}{e^{x}}kdx
limit as x approaches 0 of+(ln(x))
\lim\:_{x\to\:0}(+(\ln(x)))
y^{''}-8y^'-15y=0
y^{\prime\:\prime\:}-8y^{\prime\:}-15y=0
derivative of (2x)/5
derivative\:\frac{2x}{5}
limit as x approaches 2 of 3x^2+4x-3
\lim\:_{x\to\:2}(3x^{2}+4x-3)
integral of 2(1+2x)^4
\int\:2(1+2x)^{4}dx
integral of (6/(x^4))
\int\:(\frac{6}{x^{4}})dx
derivative of e^{2x}2
\frac{d}{dx}(e^{2x}2)
(\partial)/(\partial x)(xycos(yz))
\frac{\partial\:}{\partial\:x}(xy\cos(yz))
derivative of ln((x^2-1/(x^2+1)))
\frac{d}{dx}(\ln(\frac{x^{2}-1}{x^{2}+1}))
derivative of (x+1/(\sqrt[3]{x})^2)
\frac{d}{dx}((x+\frac{1}{\sqrt[3]{x}})^{2})
derivative of a^2x^2+b^2
derivative\:a^{2}x^{2}+b^{2}
derivative of y=(((x^2+8))/(x^2-8))
derivative\:y=(\frac{(x^{2}+8)}{x^{2}-8})
laplacetransform 3t^2+13t+13
laplacetransform\:3t^{2}+13t+13
maclaurin e^{((x^5))/5}
maclaurin\:e^{\frac{(x^{5})}{5}}
derivative of 1/((1-t^2)^{1/2)}
derivative\:\frac{1}{(1-t^{2})^{\frac{1}{2}}}
tangent of f(x)=((x+1)/(x+3))^2,\at x=-2
tangent\:f(x)=(\frac{x+1}{x+3})^{2},\at\:x=-2
integral from 0 to infinity of ((ye^{-y/a}))/a
\int\:_{0}^{\infty\:}\frac{(ye^{-\frac{y}{a}})}{a}dy
area y=x^2-4x,y=2x+7
area\:y=x^{2}-4x,y=2x+7
(dy)/(dx)=(x^3-y^3)/(3xy^2)
\frac{dy}{dx}=\frac{x^{3}-y^{3}}{3xy^{2}}
integral of 3ln(x^2-x+4)
\int\:3\ln(x^{2}-x+4)dx
((x-2)^2(x+4))^'
((x-2)^{2}(x+4))^{\prime\:}
sum from n=1 to infinity of n/(3^{n^2)}
\sum\:_{n=1}^{\infty\:}\frac{n}{3^{n^{2}}}
f(x)=5x^2e^{3x}
f(x)=5x^{2}e^{3x}
tangent of y=(1+2x)^2,(3,49)
tangent\:y=(1+2x)^{2},(3,49)
inverse oflaplace s/((s+1)^2+4)
inverselaplace\:\frac{s}{(s+1)^{2}+4}
(\partial)/(\partial y)(x^2+y^2+z^2)
\frac{\partial\:}{\partial\:y}(x^{2}+y^{2}+z^{2})
integral of 5cos^3(2x)
\int\:5\cos^{3}(2x)dx
integral of (ln(x^3))/(-804x^2)
\int\:\frac{\ln(x^{3})}{-804x^{2}}dx
slope of (0.3,-1),(-0.1,-0.8)
slope\:(0.3,-1),(-0.1,-0.8)
(\partial)/(\partial x)(8e^x)
\frac{\partial\:}{\partial\:x}(8e^{x})
derivative of (x^3-2x+1(2x^2+3x))
\frac{d}{dx}((x^{3}-2x+1)(2x^{2}+3x))
tangent of f(x)=(x-6)/(9x-1),\at x=1
tangent\:f(x)=\frac{x-6}{9x-1},\at\:x=1
integral of sqrt(x)+1/(\sqrt[3]{x)}
\int\:\sqrt{x}+\frac{1}{\sqrt[3]{x}}dx
mydx=nxdy
mydx=nxdy
integral from 0 to 1 of 1/(4+x^2)
\int\:_{0}^{1}\frac{1}{4+x^{2}}dx
limit as x approaches 0 of (1/x+1)^x
\lim\:_{x\to\:0}((\frac{1}{x}+1)^{x})
area p(x)=0.7x+20,p(x)=(547.8)/(x+15)
area\:p(x)=0.7x+20,p(x)=\frac{547.8}{x+15}
inverse oflaplace 5/(s^2+3s+2)
inverselaplace\:\frac{5}{s^{2}+3s+2}
limit as x approaches-5 of sqrt((2x^2+7x-15)/(x^2-25))
\lim\:_{x\to\:-5}(\sqrt{\frac{2x^{2}+7x-15}{x^{2}-25}})
(dy)/(dx)=(4sec(y))/((x+3)^2)
\frac{dy}{dx}=\frac{4\sec(y)}{(x+3)^{2}}
integral of 1/(sqrt(4x^2+9))
\int\:\frac{1}{\sqrt{4x^{2}+9}}dx
derivative of f(x)=8sqrt(x)
derivative\:f(x)=8\sqrt{x}
integral of 1/(sqrt(9x^2-1))
\int\:\frac{1}{\sqrt{9x^{2}-1}}dx
(x+y)dx=(y-x)dy
(x+y)dx=(y-x)dy
integral of (21)/((1-x^2)^{3/2)}
\int\:\frac{21}{(1-x^{2})^{\frac{3}{2}}}dx
slope of (-10-6)(-10-5)
slope\:(-10-6)(-10-5)
(dy)/(dt)=sin(y)
\frac{dy}{dt}=\sin(y)
integral of p/(p^2+1)
\int\:\frac{p}{p^{2}+1}dp
integral of (arcsin(x))/(x^2)
\int\:\frac{\arcsin(x)}{x^{2}}dx
(\partial)/(\partial x)(x+2)
\frac{\partial\:}{\partial\:x}(x+2)
area 9x,x^3
area\:9x,x^{3}
integral of u^{-5}(8-u^5+u^{10})
\int\:u^{-5}(8-u^{5}+u^{10})du
limit as n approaches infinity of (n+1)x
\lim\:_{n\to\:\infty\:}((n+1)x)
derivative of (3x-9)/(2x+8)
derivative\:\frac{3x-9}{2x+8}
derivative of t^{-3}
derivative\:t^{-3}
derivative of cos^3((x^2/(1-x)))
\frac{d}{dx}(\cos^{3}(\frac{x^{2}}{1-x}))
limit as x approaches-2 of 1/(sqrt(2-x))
\lim\:_{x\to\:-2}(\frac{1}{\sqrt{2-x}})
derivative of 2sin(x-2xcos(x))
\frac{d}{dx}(2\sin(x)-2x\cos(x))
(\partial)/(\partial x)(ln(1+x^2))
\frac{\partial\:}{\partial\:x}(\ln(1+x^{2}))
tangent of y=4x^2-3x+3,(1,4)
tangent\:y=4x^{2}-3x+3,(1,4)
integral of x^3-3
\int\:x^{3}-3dx
d/(dθ)(e^{tan(θ)})
\frac{d}{dθ}(e^{\tan(θ)})
integral from 0 to 1 of y/(e^{5y)}
\int\:_{0}^{1}\frac{y}{e^{5y}}dy
integral of (2xsqrt(x)-1/(sqrt(x)))
\int\:(2x\sqrt{x}-\frac{1}{\sqrt{x}})dx
3y^{''}-11y^'+10y=0,y(0)=8,y^'(0)=-4
3y^{\prime\:\prime\:}-11y^{\prime\:}+10y=0,y(0)=8,y^{\prime\:}(0)=-4
integral of (e^{4x}-e^{-4x})^2
\int\:(e^{4x}-e^{-4x})^{2}dx
integral of 5/6 csc^2(x/6)
\int\:\frac{5}{6}\csc^{2}(\frac{x}{6})dx
integral of ((2x+3))/(sqrt(x+2))
\int\:\frac{(2x+3)}{\sqrt{x+2}}dx
derivative of f(x)= 2/(3x+1)
derivative\:f(x)=\frac{2}{3x+1}
laplacetransform 5sin(t)
laplacetransform\:5\sin(t)
integral from 0 to 1 of 1/(e^x+1)
\int\:_{0}^{1}\frac{1}{e^{x}+1}dx
ay^'=bx-by
ay^{\prime\:}=bx-by
(dy)/(dx)+(5x)y=3x+5
\frac{dy}{dx}+(5x)y=3x+5
integral of e^t+e^{-t}
\int\:e^{t}+e^{-t}dt
(\partial)/(\partial z)(sin(xy))
\frac{\partial\:}{\partial\:z}(\sin(xy))
(\partial)/(\partial y)(ln((y^9)/(x^7)))
\frac{\partial\:}{\partial\:y}(\ln(\frac{y^{9}}{x^{7}}))
integral from 0 to 60 of 25e^{-0.03x}
\int\:_{0}^{60}25e^{-0.03x}dx
integral of (9t-4)/(t+1)
\int\:\frac{9t-4}{t+1}dt
d/(d{x)}({x}{y}{z}+5/4 {z}^4+e^{{x}}cos({y}))
\frac{d}{d{x}}({x}{y}{z}+\frac{5}{4}{z}^{4}+e^{{x}}\cos({y}))
limit as x approaches 0 of xsin(3/x)
\lim\:_{x\to\:0}(x\sin(\frac{3}{x}))
integral of sin^2(o)
\int\:\sin^{2}(o)do
inverse oflaplace ((s+3)^2)/(s(s^2+10))
inverselaplace\:\frac{(s+3)^{2}}{s(s^{2}+10)}
integral of 1x^2
\int\:1x^{2}dx
derivative of 15x^2
\frac{d}{dx}(15x^{2})
integral of ((x-1)^2)/x
\int\:\frac{(x-1)^{2}}{x}dx
integral from 0 to 1 of (89)/(x^5)
\int\:_{0}^{1}\frac{89}{x^{5}}dx
xy^'+2y=x^3-4
xy^{\prime\:}+2y=x^{3}-4
integral from 4 to infinity of 7e^{-x/2}
\int\:_{4}^{\infty\:}7e^{-\frac{x}{2}}dx
derivative of 4^{-x^2}
\frac{d}{dx}(4^{-x^{2}})
1
..
403
404
405
406
407
..
2459