Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 0.8x
\int\:0.8xdx
(\partial)/(\partial y)(x^2+(y-1)^2+z^2)
\frac{\partial\:}{\partial\:y}(x^{2}+(y-1)^{2}+z^{2})
limit as x approaches 4 of (|x+4|)/(x+4)
\lim\:_{x\to\:4}(\frac{\left|x+4\right|}{x+4})
integral of (5x^2+8x+5)/((x-5)(x^2+9))
\int\:\frac{5x^{2}+8x+5}{(x-5)(x^{2}+9)}dx
derivative of f(x)=8xsin(x)
derivative\:f(x)=8x\sin(x)
integral from 1 to 9 of (sqrt(x^2-1))/x
\int\:_{1}^{9}\frac{\sqrt{x^{2}-1}}{x}dx
area f(x)=sqrt(x),g(x)=-sqrt(x),x=1,x=4
area\:f(x)=\sqrt{x},g(x)=-\sqrt{x},x=1,x=4
integral of (5x^2-10x)/(\sqrt[4]{3x^3)}
\int\:\frac{5x^{2}-10x}{\sqrt[4]{3x^{3}}}dx
derivative of 4sin(x+4cos(x))
\frac{d}{dx}(4\sin(x)+4\cos(x))
derivative of sqrt(1-49x^2)arccos(7x)
derivative\:\sqrt{1-49x^{2}}\arccos(7x)
limit as x approaches 2 of 7(x)+10
\lim\:_{x\to\:2}(7(x)+10)
derivative of f(x)=2x^4,x=-2
derivative\:f(x)=2x^{4},x=-2
(dy)/(dx)-2y=xy^3
\frac{dy}{dx}-2y=xy^{3}
sum from n=1 to infinity of (3n)/(10n+3)
\sum\:_{n=1}^{\infty\:}\frac{3n}{10n+3}
sum from n=5 to infinity of e^7-6n
\sum\:_{n=5}^{\infty\:}e^{7}-6n
derivative of 1/2 \sqrt[3]{x}
\frac{d}{dx}(\frac{1}{2}\sqrt[3]{x})
7t(dy)/(dt)+y=t^5
7t\frac{dy}{dt}+y=t^{5}
integral of x^2In(4x)
\int\:x^{2}In(4x)dx
f(x)=x^{4/5}
f(x)=x^{\frac{4}{5}}
tangent of f(x)=arcsin(x)+x^2,\at x=0
tangent\:f(x)=\arcsin(x)+x^{2},\at\:x=0
integral of cos^4(7x+9)
\int\:\cos^{4}(7x+9)dx
derivative of 2x^2e^{2x}
\frac{d}{dx}(2x^{2}e^{2x})
derivative of (x^2)/(1+8x)
derivative\:\frac{x^{2}}{1+8x}
derivative of 2sqrt(x+1)
\frac{d}{dx}(2\sqrt{x+1})
integral from-infinity to 0 of e^{8x}
\int\:_{-\infty\:}^{0}e^{8x}dx
(\partial)/(\partial y)(x/((x+y)))
\frac{\partial\:}{\partial\:y}(\frac{x}{(x+y)})
integral of x^2*sin(nx)
\int\:x^{2}\cdot\:\sin(nx)dx
(dy)/(dx)=y+5x
\frac{dy}{dx}=y+5x
(\partial)/(\partial y)(4xzsin(y))
\frac{\partial\:}{\partial\:y}(4xz\sin(y))
derivative of sqrt(x(x+13))
\frac{d}{dx}(\sqrt{x(x+13)})
(1+ln(x)+y/x)dx=(9-ln(x))dy
(1+\ln(x)+\frac{y}{x})dx=(9-\ln(x))dy
(\partial)/(\partial x)(x^8e^{xy})
\frac{\partial\:}{\partial\:x}(x^{8}e^{xy})
integral of 4x^2e^{-2x}
\int\:4x^{2}e^{-2x}dx
(\partial)/(\partial x)(x^{-2}*y/(x^3))
\frac{\partial\:}{\partial\:x}(x^{-2}\cdot\:\frac{y}{x^{3}})
yy^'+xy^2=xy^4
yy^{\prime\:}+xy^{2}=xy^{4}
derivative of 1/2 x^{-2}
\frac{d}{dx}(\frac{1}{2}x^{-2})
integral of x^5Inx
\int\:x^{5}Inxdx
derivative of log_{10}(x/(x+1))
\frac{d}{dx}(\log_{10}(\frac{x}{x+1}))
limit as x approaches-3 of f(x)
\lim\:_{x\to\:-3}(f(x))
integral of sec^8(x)tan(x)
\int\:\sec^{8}(x)\tan(x)dx
derivative of sqrt(-x+2)
\frac{d}{dx}(\sqrt{-x+2})
f(t)=cos(t)+t^2sin(t)
f(t)=\cos(t)+t^{2}\sin(t)
integral of-9e^{-x}
\int\:-9e^{-x}dx
derivative of (25/(x^2)-5/x)
\frac{d}{dx}(\frac{25}{x^{2}}-\frac{5}{x})
y^{''}-2y^'+y=e^{3x}
y^{\prime\:\prime\:}-2y^{\prime\:}+y=e^{3x}
derivative of sqrt(r^2-19x^2)
\frac{d}{dx}(\sqrt{r^{2}-19x^{2}})
limit as x approaches 3 of x^2+3x
\lim\:_{x\to\:3}(x^{2}+3x)
limit as x approaches 2 of (x^2-3)e^x
\lim\:_{x\to\:2}((x^{2}-3)e^{x})
derivative of f(x)=x+3/(x^2)
derivative\:f(x)=x+\frac{3}{x^{2}}
derivative of 2xsin(pix)
\frac{d}{dx}(2x\sin(πx))
y^{''}-(3+pi)y^'+3pi*y=sin(pi/2)
y^{\prime\:\prime\:}-(3+π)y^{\prime\:}+3π\cdot\:y=\sin(\frac{π}{2})
(x^2-9)y^'+6y=(x+3)^2
(x^{2}-9)y^{\prime\:}+6y=(x+3)^{2}
derivative of x*sin(x^2)
derivative\:x\cdot\:\sin(x^{2})
tangent of x^2+xy-y^2=19,(4,1)
tangent\:x^{2}+xy-y^{2}=19,(4,1)
limit as x approaches 0+of (cos(x)-1)/x
\lim\:_{x\to\:0+}(\frac{\cos(x)-1}{x})
integral from-3 to 3 of sqrt(1+(x)^2)
\int\:_{-3}^{3}\sqrt{1+(x)^{2}}dx
derivative of x^2-4x+8
derivative\:x^{2}-4x+8
inverse oflaplace (s+1)/(s^2+3s)
inverselaplace\:\frac{s+1}{s^{2}+3s}
x*(dy)/(dx)-y=3x^6y,y(1)=2
x\cdot\:\frac{dy}{dx}-y=3x^{6}y,y(1)=2
integral from 2 to 7 of 2piy(7-y)
\int\:_{2}^{7}2πy(7-y)dy
integral of 1/(9-7x)
\int\:\frac{1}{9-7x}dx
(\partial)/(\partial x)(1/(x^3+4x^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{x^{3}+4x^{2}})
derivative of cot(8x)
\frac{d}{dx}(\cot(8x))
(\partial)/(\partial y)((x+y)*e^{y^2})
\frac{\partial\:}{\partial\:y}((x+y)\cdot\:e^{y^{2}})
integral of (sec(x)tan(x))/(sec(x))
\int\:\frac{\sec(x)\tan(x)}{\sec(x)}dx
derivative of (2-5x)/(3x^{1/3)}
derivative\:\frac{2-5x}{3x^{\frac{1}{3}}}
derivative of 2x^3y+1
\frac{d}{dx}(2x^{3}y+1)
slope of (3,-7),(-10,-2)
slope\:(3,-7),(-10,-2)
derivative of e^{13x}
derivative\:e^{13x}
integral from 1 to 7 of t^2-4t-12
\int\:_{1}^{7}t^{2}-4t-12dt
d/(dt)(cosh^2(t))
\frac{d}{dt}(\cosh^{2}(t))
(dy)/(dx)=(y^2+2xsqrt(x^2+y^2))/(xy)
\frac{dy}{dx}=\frac{y^{2}+2x\sqrt{x^{2}+y^{2}}}{xy}
limit as x approaches infinity of 2x+2
\lim\:_{x\to\:\infty\:}(2x+2)
(t^2)^'
(t^{2})^{\prime\:}
f(x)=x^2-x-ln(x)
f(x)=x^{2}-x-\ln(x)
integral of (15x^4-6x^3+5)/(5x^2)
\int\:\frac{15x^{4}-6x^{3}+5}{5x^{2}}dx
derivative of (cos(x)(2x^3))
\frac{d}{dx}((\cos(x))(2x^{3}))
(dy)/(dx)= 1/(x+e^y)
\frac{dy}{dx}=\frac{1}{x+e^{y}}
derivative of (5x/(ln((4x-1)^2)))
\frac{d}{dx}(\frac{5x}{\ln((4x-1)^{2})})
limit as x approaches infinity of g(x)
\lim\:_{x\to\:\infty\:}(g(x))
tangent of 5x^2-3x-5
tangent\:5x^{2}-3x-5
tangent of f(x)=e^{x^7},(-1, 1/e)
tangent\:f(x)=e^{x^{7}},(-1,\frac{1}{e})
derivative of (x^2cos(e^x)/((2x+1)^3))
\frac{d}{dx}(\frac{x^{2}\cos(e^{x})}{(2x+1)^{3}})
integral from 0 to pi/2 of 7cos^5(x)
\int\:_{0}^{\frac{π}{2}}7\cos^{5}(x)dx
integral of x^3sqrt(x^2-49)
\int\:x^{3}\sqrt{x^{2}-49}dx
derivative of ln(10^x)
\frac{d}{dx}(\ln(10^{x}))
area y=-x^2+8x,y=x^2-4x
area\:y=-x^{2}+8x,y=x^{2}-4x
derivative of 8sin^3(t)
derivative\:8\sin^{3}(t)
integral of (sec(u))/(tan(u))
\int\:\frac{\sec(u)}{\tan(u)}du
derivative of y=x^3-3x
derivative\:y=x^{3}-3x
derivative of (1+sin(x)/(1+cos(x)))
\frac{d}{dx}(\frac{1+\sin(x)}{1+\cos(x)})
derivative of (2ra^{rx}+n)^p
derivative\:(2ra^{rx}+n)^{p}
limit as x approaches 0+of x^{x^x}
\lim\:_{x\to\:0+}(x^{x^{x}})
derivative of x-0.8-0.2sin(x)
\frac{d}{dx}(x-0.8-0.2\sin(x))
sum from n=0 to infinity of 1/(n^2+4n+3)
\sum\:_{n=0}^{\infty\:}\frac{1}{n^{2}+4n+3}
tangent of y=2x^3-x^2+5,(2,17)
tangent\:y=2x^{3}-x^{2}+5,(2,17)
tangent of f(x)=3x^2+4x+1,\at x=0
tangent\:f(x)=3x^{2}+4x+1,\at\:x=0
8cos^2(y)dx+csc^2(x)dy=0,y(pi/(12))= pi/4
8\cos^{2}(y)dx+\csc^{2}(x)dy=0,y(\frac{π}{12})=\frac{π}{4}
derivative of f(x)=(x+3)/(sqrt(x))
derivative\:f(x)=\frac{x+3}{\sqrt{x}}
derivative of (a+bx+cx^2/x)
\frac{d}{dx}(\frac{a+bx+cx^{2}}{x})
1
..
402
403
404
405
406
..
2459