Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of x=4t^2-3t+11
derivative\:x=4t^{2}-3t+11
derivative of sin^2(x+sin(x))
\frac{d}{dx}(\sin^{2}(x)+\sin(x))
derivative of 4cos(t)
derivative\:4\cos(t)
area x=4y^2,x=2+2y^2
area\:x=4y^{2},x=2+2y^{2}
(\partial)/(\partial x)(4x^2+xy+3y^2-8)
\frac{\partial\:}{\partial\:x}(4x^{2}+xy+3y^{2}-8)
integral of sin(x)sec^2(cos(x))
\int\:\sin(x)\sec^{2}(\cos(x))dx
tangent of f(x)=2x^2,\at x=5
tangent\:f(x)=2x^{2},\at\:x=5
integral of 7cos^2(x)sin(2x)
\int\:7\cos^{2}(x)\sin(2x)dx
integral of t^2cos(nt)
\int\:t^{2}\cos(nt)dt
integral of (-x)/x
\int\:\frac{-x}{x}dx
limit as s approaches 0 of s*k/(s*(s/5+1)*(\frac{s){50}+1)}
\lim\:_{s\to\:0}(s\cdot\:\frac{k}{s\cdot\:(\frac{s}{5}+1)\cdot\:(\frac{s}{50}+1)})
(\partial)/(\partial x)(x^3y^5+9x^5y)
\frac{\partial\:}{\partial\:x}(x^{3}y^{5}+9x^{5}y)
integral of 1/9 (4-x^2)
\int\:\frac{1}{9}(4-x^{2})dx
area y=x^3-x^2-6x,x
area\:y=x^{3}-x^{2}-6x,x
(\partial)/(\partial x)(y^5sin(5x))
\frac{\partial\:}{\partial\:x}(y^{5}\sin(5x))
derivative of (2x^4+3x^2-1)/(x^2)
derivative\:\frac{2x^{4}+3x^{2}-1}{x^{2}}
derivative of x^4(x-3^3)
\frac{d}{dx}(x^{4}(x-3)^{3})
integral of 8x^5e^{5x^6}
\int\:8x^{5}e^{5x^{6}}dx
(d^2y)/(dx^2)-2(dy)/(dx)+y=0
\frac{d^{2}y}{dx^{2}}-2\frac{dy}{dx}+y=0
area y=9ln(5x),y=11,[2,4]
area\:y=9\ln(5x),y=11,[2,4]
integral of sin^2(x)
\int\:\sin^{2}(x)dx
derivative of x^{1/4}y^{3/4}
\frac{d}{dx}(x^{\frac{1}{4}}y^{\frac{3}{4}})
derivative of (x^4+7x^2-9)^5
derivative\:(x^{4}+7x^{2}-9)^{5}
integral of ((x+1)/(sqrt(x-1)))
\int\:(\frac{x+1}{\sqrt{x-1}})dx
tangent of f(x)=e^x,\at x=ln(13)
tangent\:f(x)=e^{x},\at\:x=\ln(13)
tangent of f(x)=e^x(8+3x+5x^2),\at x=0
tangent\:f(x)=e^{x}(8+3x+5x^{2}),\at\:x=0
derivative of x^3e^{-4x}
\frac{d}{dx}(x^{3}e^{-4x})
(dy)/(dx)+y-4cos(x)=0
\frac{dy}{dx}+y-4\cos(x)=0
integral from 0 to 5 of 1/(x^{17/18)}
\int\:_{0}^{5}\frac{1}{x^{\frac{17}{18}}}dx
integral of ve^{uv}
\int\:ve^{uv}du
derivative of f(x)=sqrt((5-2x)(3x-1)^3)
derivative\:f(x)=\sqrt{(5-2x)(3x-1)^{3}}
integral of (x+3)/(3x^2-6x+8)
\int\:\frac{x+3}{3x^{2}-6x+8}dx
(d^2)/(dx^2)(4x\sqrt[3]{x})
\frac{d^{2}}{dx^{2}}(4x\sqrt[3]{x})
d/(dt)((2t)/(4+t^2))
\frac{d}{dt}(\frac{2t}{4+t^{2}})
integral from 1 to 3 of (x^2+2x-4)
\int\:_{1}^{3}(x^{2}+2x-4)dx
sum from n=1 to infinity of (5^n)/(3^n)
\sum\:_{n=1}^{\infty\:}\frac{5^{n}}{3^{n}}
integral of 1/((x^2+y^2)^{3/2)}
\int\:\frac{1}{(x^{2}+y^{2})^{\frac{3}{2}}}dx
3y^{''}-24y^'+36y=6sin(2x)
3y^{\prime\:\prime\:}-24y^{\prime\:}+36y=6\sin(2x)
derivative of 1/(sqrt(1+x^8))
\frac{d}{dx}(\frac{1}{\sqrt{1+x^{8}}})
integral of 6e^{-0.5x}
\int\:6e^{-0.5x}dx
(\partial)/(\partial x)(ln(5x^2-2y^2))
\frac{\partial\:}{\partial\:x}(\ln(5x^{2}-2y^{2}))
integral from 1 to 3 of 2/(4+(x-1)^2)
\int\:_{1}^{3}\frac{2}{4+(x-1)^{2}}dx
y^'=(2y)/x
y^{\prime\:}=\frac{2y}{x}
limit as x approaches 0 of (|x^2|)/x
\lim\:_{x\to\:0}(\frac{\left|x^{2}\right|}{x})
derivative of 2sec(cos(x)+2tan(2x))
\frac{d}{dx}(2\sec(\cos(x))+2\tan(2x))
limit as x approaches 5 of (x^2+kx-20)/(x-5)
\lim\:_{x\to\:5}(\frac{x^{2}+kx-20}{x-5})
slope ofintercept (1,128),(4,161)
slopeintercept\:(1,128),(4,161)
derivative of ln(-1/x)
\frac{d}{dx}(\ln(-\frac{1}{x}))
y^'=0.0875-(7y)/(2000),y(0)=50
y^{\prime\:}=0.0875-\frac{7y}{2000},y(0)=50
tangent of f(x)=((3x+5))/(1+x),\at x=1
tangent\:f(x)=\frac{(3x+5)}{1+x},\at\:x=1
derivative of 3x^2-6x-8
\frac{d}{dx}(3x^{2}-6x-8)
integral of (e^x)/(x-1)
\int\:\frac{e^{x}}{x-1}dx
limit as x approaches 0 of ln(1-5x)
\lim\:_{x\to\:0}(\ln(1-5x))
xy^{''}-y^'+y^'=0
xy^{\prime\:\prime\:}-y^{\prime\:}+y^{\prime\:}=0
derivative of (1+x-4sqrt(x)/x)
\frac{d}{dx}(\frac{1+x-4\sqrt{x}}{x})
derivative of y=ln(3x^5)
derivative\:y=\ln(3x^{5})
(dy)/(dx)+2y=2e^x
\frac{dy}{dx}+2y=2e^{x}
derivative of x^2sqrt(10x-3)
\frac{d}{dx}(x^{2}\sqrt{10x-3})
3y^{''}+17y^'+10y=0
3y^{\prime\:\prime\:}+17y^{\prime\:}+10y=0
derivative of mx^{m-2}(m-1)
\frac{d}{dx}(mx^{m-2}(m-1))
area y=e^x,y=e^{-3x},x=ln(6)
area\:y=e^{x},y=e^{-3x},x=\ln(6)
(dy)/(dt)=t^2+13t^2y
\frac{dy}{dt}=t^{2}+13t^{2}y
integral of (e^x+xcos(y))
\int\:(e^{x}+x\cos(y))dy
integral from 3 to 6 of x/(x^2+4x+13)
\int\:_{3}^{6}\frac{x}{x^{2}+4x+13}dx
integral of (x^4)/(sqrt(x^{10)-1)}
\int\:\frac{x^{4}}{\sqrt{x^{10}-1}}dx
derivative of f(x)= 7/(sqrt(x-6))
derivative\:f(x)=\frac{7}{\sqrt{x-6}}
roots e^{kx}
roots\:e^{kx}
(\partial)/(\partial x)(2x^2+4y+1)
\frac{\partial\:}{\partial\:x}(2x^{2}+4y+1)
f(x)= 1/2 ln(x)
f(x)=\frac{1}{2}\ln(x)
integral of (3x-x^3+1)/(x^4)
\int\:\frac{3x-x^{3}+1}{x^{4}}dx
limit as x approaches 10 of ln(100-x^2)
\lim\:_{x\to\:10}(\ln(100-x^{2}))
derivative of x^2+1
derivative\:x^{2}+1
limit as x approaches 0-of (sin(2x))/x
\lim\:_{x\to\:0-}(\frac{\sin(2x)}{x})
integral of (x^3-3x^2+5x-3)/(x-1)
\int\:\frac{x^{3}-3x^{2}+5x-3}{x-1}dx
area y=3x-x^2,y=-5x
area\:y=3x-x^{2},y=-5x
tangent of f(x)=sqrt(3x+1),\at x=5
tangent\:f(x)=\sqrt{3x+1},\at\:x=5
derivative of 2e^{6x}
\frac{d}{dx}(2e^{6x})
derivative of f(x)=\sqrt[5]{x^3-3x}
derivative\:f(x)=\sqrt[5]{x^{3}-3x}
integral of xsqrt(1+x^4)
\int\:x\sqrt{1+x^{4}}dx
derivative of sin^2(x-3y)
\frac{d}{dx}(\sin^{2}(x-3y))
integral of e^xsqrt(3-e^x)
\int\:e^{x}\sqrt{3-e^{x}}dx
integral of 3(x-1)y^3e^{y(1-x)}
\int\:3(x-1)y^{3}e^{y(1-x)}dx
integral of+e^{-0.1x}
\int\:+e^{-0.1x}dx
limit as x approaches 1 of ln(x^{1/2})
\lim\:_{x\to\:1}(\ln(x^{\frac{1}{2}}))
inverse oflaplace 1/(s^3+5s)
inverselaplace\:\frac{1}{s^{3}+5s}
inverse oflaplace 1/(1+sa)
inverselaplace\:\frac{1}{1+sa}
derivative of f(x)=8^{(x^2+4x)}
\frac{d}{dx}f(x)=8^{(x^{2}+4x)}
(dy)/(dx)=e^{2x+3y},y(0)=0
\frac{dy}{dx}=e^{2x+3y},y(0)=0
integral from 6 to infinity of xe^{-2x}
\int\:_{6}^{\infty\:}xe^{-2x}dx
integral of-5cos(x)
\int\:-5\cos(x)dx
y^{''}-8y^'+10y=0
y^{\prime\:\prime\:}-8y^{\prime\:}+10y=0
integral of 8sec^2(x)
\int\:8\sec^{2}(x)dx
limit as x approaches 3 of f(x)(g(x))
\lim\:_{x\to\:3}(f(x)(g(x)))
dy=(y-1)^2dx
dy=(y-1)^{2}dx
limit as x approaches 2 of (sqrt(x^2-4x)-2x)/(2x+5)
\lim\:_{x\to\:2}(\frac{\sqrt{x^{2}-4x}-2x}{2x+5})
y^'-y^2+0.5-20y=0
y^{\prime\:}-y^{2}+0.5-20y=0
derivative of f(x)=3x^4-65x^3
derivative\:f(x)=3x^{4}-65x^{3}
x^2dx+2ydy=0
x^{2}dx+2ydy=0
inverse oflaplace s/(s^2+6s+34)
inverselaplace\:\frac{s}{s^{2}+6s+34}
(\partial)/(\partial y)(((x+y))/(x-y))
\frac{\partial\:}{\partial\:y}(\frac{(x+y)}{x-y})
1
..
441
442
443
444
445
..
2459