Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(cos(3x+6y))
\frac{\partial\:}{\partial\:x}(\cos(3x+6y))
(dy)/(dx)+0.8xy=4x
\frac{dy}{dx}+0.8xy=4x
(\partial)/(\partial x)(x*i)
\frac{\partial\:}{\partial\:x}(x\cdot\:i)
y*(dy)/(dx)=5x(9+y^2)
y\cdot\:\frac{dy}{dx}=5x(9+y^{2})
maclaurin x^2e^{x^2}
maclaurin\:x^{2}e^{x^{2}}
integral from-3 to 3 of |x+2|
\int\:_{-3}^{3}\left|x+2\right|dx
integral of e^{6x}sin(7x)
\int\:e^{6x}\sin(7x)dx
slope of (4,-5),(6,-1)
slope\:(4,-5),(6,-1)
tangent of x/(1+x^2),\at x=1
tangent\:\frac{x}{1+x^{2}},\at\:x=1
(\partial)/(\partial y)(x*sin(xy))
\frac{\partial\:}{\partial\:y}(x\cdot\:\sin(xy))
derivative of y=ln(e^{-x}+xe^{-x})
derivative\:y=\ln(e^{-x}+xe^{-x})
integral of 2cos^3(5x)
\int\:2\cos^{3}(5x)dx
integral of (4x-3)^7
\int\:(4x-3)^{7}dx
derivative of f(x)=cos^2(e^{cos^2(x)})
derivative\:f(x)=\cos^{2}(e^{\cos^{2}(x)})
integral of (x^2-2x-4)/(x^2-4x)
\int\:\frac{x^{2}-2x-4}{x^{2}-4x}dx
integral from-1 to 1 of (e^x-(x^2-1))
\int\:_{-1}^{1}(e^{x}-(x^{2}-1))dx
integral of (3x+1)/(x^2+1)
\int\:\frac{3x+1}{x^{2}+1}dx
(\partial)/(\partial y)(xye^{-1y})
\frac{\partial\:}{\partial\:y}(xye^{-1y})
limit as x approaches 1 of sin((pix)/2)
\lim\:_{x\to\:1}(\sin(\frac{πx}{2}))
integral of-3*sqrt(x)+2x
\int\:-3\cdot\:\sqrt{x}+2xdx
integral of (x^2)/(sqrt(x^2-4))
\int\:\frac{x^{2}}{\sqrt{x^{2}-4}}dx
derivative of (-5)/(x^5)
derivative\:\frac{-5}{x^{5}}
-3x^2y+y^'=-5x^2
-3x^{2}y+y^{\prime\:}=-5x^{2}
area y=2(x+1),y=3(x+1),x=3
area\:y=2(x+1),y=3(x+1),x=3
integral from 1 to 4 of 3(ln(x))/(x^2)
\int\:_{1}^{4}3\frac{\ln(x)}{x^{2}}dx
derivative of f(x)=-6x^{-2}
derivative\:f(x)=-6x^{-2}
integral from-2 to 1 of 2x^2+3
\int\:_{-2}^{1}2x^{2}+3dx
integral of sin^3(x)cos^2(x
\int\:\sin^{3}(x)\cos^{2}(d)xdx
(\partial)/(\partial x)(x^2*y*z)
\frac{\partial\:}{\partial\:x}(x^{2}\cdot\:y\cdot\:z)
integral of cos(x)sin(x)
\int\:\cos(x)\sin(x)dx
integral of 1/2 e^{-x/2}
\int\:\frac{1}{2}e^{-\frac{x}{2}}dx
slope of 5/(1+x^2)
slope\:\frac{5}{1+x^{2}}
(dy)/(dx)=(((2y+5))/(8x+7))^2
\frac{dy}{dx}=(\frac{(2y+5)}{8x+7})^{2}
integral of 3sqrt(sin(x))cos(x)
\int\:3\sqrt{\sin(x)}\cos(x)dx
(\partial)/(\partial x)(3(((4+z))/(5+x))^2)
\frac{\partial\:}{\partial\:x}(3(\frac{(4+z)}{5+x})^{2})
integral of xsqrt(15x-5)
\int\:x\sqrt{15x-5}dx
1/x dx-1/y dy=0
\frac{1}{x}dx-\frac{1}{y}dy=0
derivative of e^x-x^5
derivative\:e^{x}-x^{5}
y/(2(x+y))=(dy)/(dx)
\frac{y}{2(x+y)}=\frac{dy}{dx}
derivative of f(x)=(3x^5+x6^x)2^{32}
derivative\:f(x)=(3x^{5}+x6^{x})2^{32}
slope ofintercept (1,-9),(-3,-9)
slopeintercept\:(1,-9),(-3,-9)
sum from n=1 to infinity of 2^n 1/(n^2)
\sum\:_{n=1}^{\infty\:}2^{n}\frac{1}{n^{2}}
integral of cos(-5x)
\int\:\cos(-5x)dx
integral of (x^2)/(sqrt(144-x^2))
\int\:\frac{x^{2}}{\sqrt{144-x^{2}}}dx
integral from 3 to 32 of 1/(x^3-27)
\int\:_{3}^{32}\frac{1}{x^{3}-27}dx
tangent of f(x)=(5x)/(x+3),\at x=2
tangent\:f(x)=\frac{5x}{x+3},\at\:x=2
(\partial)/(\partial x)(ln(4-t^2))
\frac{\partial\:}{\partial\:x}(\ln(4-t^{2}))
integral from 0 to 4 of (10-x)sqrt(x)
\int\:_{0}^{4}(10-x)\sqrt{x}dx
sum from n=0 to infinity of (2^n)/(2^n)
\sum\:_{n=0}^{\infty\:}\frac{2^{n}}{2^{n}}
derivative of e^xsqrt((x^2+1))-2-x
derivative\:e^{x}\sqrt{(x^{2}+1)}-2-x
tangent of y=2^x
tangent\:y=2^{x}
(\partial)/(\partial z)(3xz^3e^{y^2})
\frac{\partial\:}{\partial\:z}(3xz^{3}e^{y^{2}})
(\partial)/(\partial z)(xz+xyz)
\frac{\partial\:}{\partial\:z}(xz+xyz)
integral of (x^{11}e^{x^{12}})
\int\:(x^{11}e^{x^{12}})dx
integral of (3x^2+2)/(x^2)
\int\:\frac{3x^{2}+2}{x^{2}}dx
area 2x+y^2=8,x
area\:2x+y^{2}=8,x
(\partial)/(\partial y)(sin(y))
\frac{\partial\:}{\partial\:y}(\sin(y))
derivative of ln(x+sin(x+1))
\frac{d}{dx}(\ln(x+\sin(x)+1))
derivative of y=((x^2+1)^5)/((1-x^2)^5)
derivative\:y=\frac{(x^{2}+1)^{5}}{(1-x^{2})^{5}}
derivative of f(x)=(ln(x))/2+2
derivative\:f(x)=\frac{\ln(x)}{2}+2
derivative of sqrt(sin(\sqrt{x))}
derivative\:\sqrt{\sin(\sqrt{x})}
integral of 30
\int\:30dx
derivative of 2x^2-10x
derivative\:2x^{2}-10x
sum from n=0 to infinity of 1/(ln(n))
\sum\:_{n=0}^{\infty\:}\frac{1}{\ln(n)}
slope of 2-4/t (4.1)
slope\:2-\frac{4}{t}(4.1)
derivative of 3x^3-2
\frac{d}{dx}(3x^{3}-2)
sum from n=0 to infinity of e^{-3n}
\sum\:_{n=0}^{\infty\:}e^{-3n}
(\partial)/(\partial x)((5x+4y)/(4x-y))
\frac{\partial\:}{\partial\:x}(\frac{5x+4y}{4x-y})
integral from (1-x)^2 to (1+x)^2 of integral from 1 to 3 of ye^{x^2}
\int\:_{(1-x)^{2}}^{(1+x)^{2}}\int\:_{1}^{3}ye^{x^{2}}dxdy
limit as x approaches-4-of (3-8x)/(x+4)
\lim\:_{x\to\:-4-}(\frac{3-8x}{x+4})
implicit (dy)/(dx),2(x^2+y^2)2=81(x^2-y^2)
implicit\:\frac{dy}{dx},2(x^{2}+y^{2})2=81(x^{2}-y^{2})
derivative of (x^2/2+x*(ln(x)-1))
\frac{d}{dx}(\frac{x^{2}}{2}+x\cdot\:(\ln(x)-1))
limit as x approaches 3 of 4x^3-2x^2+x-6
\lim\:_{x\to\:3}(4x^{3}-2x^{2}+x-6)
tangent of y= 8/(1-t),(-1,4)
tangent\:y=\frac{8}{1-t},(-1,4)
integral of 1/((x+3)^2(x-1))
\int\:\frac{1}{(x+3)^{2}(x-1)}dx
tangent of y=9x-2x^2,(-2,-26)
tangent\:y=9x-2x^{2},(-2,-26)
derivative of (6x/(6+sqrt(x)))
\frac{d}{dx}(\frac{6x}{6+\sqrt{x}})
(\partial}{\partial x}(\frac{(x+y))/y)
\frac{\partial\:}{\partial\:x}(\frac{(x+y)}{y})
derivative of y=-0.0959x^2+106.83x+71149
derivative\:y=-0.0959x^{2}+106.83x+71149
integral of 2e^{tx}x
\int\:2e^{tx}xdx
integral of \sqrt[3]{2-5x^2}(-10x)
\int\:\sqrt[3]{2-5x^{2}}(-10x)dx
integral from 1 to R of x^{-9/5}
\int\:_{1}^{R}x^{-\frac{9}{5}}dx
integral from 0 to 1 of 2pix(5x(x-1)^2)
\int\:_{0}^{1}2πx(5x(x-1)^{2})dx
derivative of (5-sec(x))/(tan(x))
derivative\:\frac{5-\sec(x)}{\tan(x)}
integral of 4/x-(4x)/(x^2+1)
\int\:\frac{4}{x}-\frac{4x}{x^{2}+1}dx
limit as x approaches 1+of 3
\lim\:_{x\to\:1+}(3)
(\partial)/(\partial x)((-x-3)/(y^2))
\frac{\partial\:}{\partial\:x}(\frac{-x-3}{y^{2}})
(sqrt(2x+1))^'
(\sqrt{2x+1})^{\prime\:}
derivative of 2x^4+x^3+3x^2
\frac{d}{dx}(2x^{4}+x^{3}+3x^{2})
tangent of f(x)= 1/(x-3),\at x=8
tangent\:f(x)=\frac{1}{x-3},\at\:x=8
integral of t^2sin(t)
\int\:t^{2}\sin(t)dt
derivative of f(t)=cos^2(pi/2-t)
derivative\:f(t)=\cos^{2}(\frac{π}{2}-t)
derivative of 2x^2-5x+2
\frac{d}{dx}(2x^{2}-5x+2)
(x+2)^2y^'+3(x+2)y=4
(x+2)^{2}y^{\prime\:}+3(x+2)y=4
limit as x approaches 0+of 1+xe^{(2/x)}
\lim\:_{x\to\:0+}(1+xe^{(\frac{2}{x})})
(dy)/(dx)=2y+y^5,y(0)=1
\frac{dy}{dx}=2y+y^{5},y(0)=1
integral of e^{6t}
\int\:e^{6t}dt
derivative of f(x)= A/(x^{10)}+Be^x
derivative\:f(x)=\frac{A}{x^{10}}+Be^{x}
y^'-5y=6e^{5x},y(0)=0
y^{\prime\:}-5y=6e^{5x},y(0)=0
derivative of ln(2x^2-3x+1)
\frac{d}{dx}(\ln(2x^{2}-3x+1))
1
..
1467
1468
1469
1470
1471
..
2459