Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches infinity of 2-x
\lim\:_{x\to\:\infty\:}(2-x)
derivative of f(x)=x^2e^{1/x}
derivative\:f(x)=x^{2}e^{\frac{1}{x}}
integral of t^3e^{sin(t^4)}cos(t^4)
\int\:t^{3}e^{\sin(t^{4})}\cos(t^{4})dt
sum from n=0 to infinity of 0.9^{2n}
\sum\:_{n=0}^{\infty\:}0.9^{2n}
cos^2(x)sin(x)y^'+cos^3(x)y=1
\cos^{2}(x)\sin(x)y^{\prime\:}+\cos^{3}(x)y=1
2t(dy)/(dt)=8y
2t\frac{dy}{dt}=8y
(\partial)/(\partial x)(xe^{6y})
\frac{\partial\:}{\partial\:x}(xe^{6y})
(\partial}{\partial x}(\frac{x^{3/2})/3)
\frac{\partial\:}{\partial\:x}(\frac{x^{\frac{3}{2}}}{3})
(\partial)/(\partial y)(2x^2y+3xy^3)
\frac{\partial\:}{\partial\:y}(2x^{2}y+3xy^{3})
integral from 0 to 8 of x^3sqrt(x^2+64)
\int\:_{0}^{8}x^{3}\sqrt{x^{2}+64}dx
(\partial)/(\partial x)(e^{-20})
\frac{\partial\:}{\partial\:x}(e^{-20})
derivative of 2x^6-9x^5+15x^4-10x^3+3x-1
\frac{d}{dx}(2x^{6}-9x^{5}+15x^{4}-10x^{3}+3x-1)
derivative of (x^2+x-12/(x-4))
\frac{d}{dx}(\frac{x^{2}+x-12}{x-4})
limit as x approaches 0 of (2x^2+x)/x
\lim\:_{x\to\:0}(\frac{2x^{2}+x}{x})
derivative of y=(x^2)/(5-8x)
derivative\:y=\frac{x^{2}}{5-8x}
derivative of x/(4+x^2)
\frac{d}{dx}(\frac{x}{4+x^{2}})
limit as x approaches 0 of x^3*sin(1/x)
\lim\:_{x\to\:0}(x^{3}\cdot\:\sin(\frac{1}{x}))
limit as x approaches 0 of (1-2x)^{5/x}
\lim\:_{x\to\:0}((1-2x)^{\frac{5}{x}})
integral of cot^2(θ)
\int\:\cot^{2}(θ)dθ
y^'+y/(120)=3
y^{\prime\:}+\frac{y}{120}=3
integral of x^4(y-2)
\int\:x^{4}(y-2)
derivative of y=(4x^2+6x+8)/(sqrt(x))
derivative\:y=\frac{4x^{2}+6x+8}{\sqrt{x}}
x^2(dy)/(dx)-2xy=5y^4,y(1)= 1/3
x^{2}\frac{dy}{dx}-2xy=5y^{4},y(1)=\frac{1}{3}
integral of ((sec(x)+cos(x))/(2cos(x)))
\int\:(\frac{\sec(x)+\cos(x)}{2\cos(x)})dx
derivative of (2x+9^2)
\frac{d}{dx}((2x+9)^{2})
derivative of y=3+log_{2}(x)
derivative\:y=3+\log_{2}(x)
dy=x^2dx
dy=x^{2}dx
derivative of (2x+5/(2x-5))
\frac{d}{dx}(\frac{2x+5}{2x-5})
(\partial)/(\partial x)(sqrt(26-x^2-y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{26-x^{2}-y^{2}})
derivative of sec(sqrt(x^2-1))
\frac{d}{dx}(\sec(\sqrt{x^{2}-1}))
laplacetransform (t-1)^4
laplacetransform\:(t-1)^{4}
derivative of (2x^4+5/(4-4x))
\frac{d}{dx}(\frac{2x^{4}+5}{4-4x})
(\partial)/(\partial x)(sqrt(25-x^2))
\frac{\partial\:}{\partial\:x}(\sqrt{25-x^{2}})
(dy)/(dx)+1/(x+8)y=x^{-2}
\frac{dy}{dx}+\frac{1}{x+8}y=x^{-2}
derivative of (x^2-2x)/((x-1)^2)
derivative\:\frac{x^{2}-2x}{(x-1)^{2}}
tangent of f(x)=x^4+9e^x,(0,9)
tangent\:f(x)=x^{4}+9e^{x},(0,9)
e^xydy=(e^{-y}+e^{-2x-y})dx
e^{x}ydy=(e^{-y}+e^{-2x-y})dx
sum from n=0 to infinity of (n+1)/(n!)
\sum\:_{n=0}^{\infty\:}\frac{n+1}{n!}
d/(dθ)(3+3sin(θ))
\frac{d}{dθ}(3+3\sin(θ))
laplacetransform 0
laplacetransform\:0
laplacetransform t+2
laplacetransform\:t+2
integral of-(26)/(x^{27)}
\int\:-\frac{26}{x^{27}}dx
limit as x approaches infinity of 2^2
\lim\:_{x\to\:\infty\:}(2^{2})
integral of e^{x/4}
\int\:e^{\frac{x}{4}}dx
y^'-2y=e^{3x}
y^{\prime\:}-2y=e^{3x}
limit as n approaches 1 of ((-1/5)^n)/n
\lim\:_{n\to\:1}(\frac{(-\frac{1}{5})^{n}}{n})
(dy)/(dx)= y/(xln(x))
\frac{dy}{dx}=\frac{y}{x\ln(x)}
integral of 3/(2sqrt(x))
\int\:\frac{3}{2\sqrt{x}}dx
integral of 1/(2^n)
\int\:\frac{1}{2^{n}}
limit as x approaches 2+of 2/((x-2)^2)
\lim\:_{x\to\:2+}(\frac{2}{(x-2)^{2}})
integral from 2 to 4 of 25
\int\:_{2}^{4}25dx
(\partial)/(\partial x)(e^{(7xy)}ln(6y))
\frac{\partial\:}{\partial\:x}(e^{(7xy)}\ln(6y))
integral of (2x^2-1)
\int\:(2x^{2}-1)dx
integral of 2cos(x)+7
\int\:2\cos(x)+7dx
derivative of ax^2+by(x^2+c)
\frac{d}{dx}(ax^{2}+by(x)^{2}+c)
integral from 0 to y of integral from 0 to x of (x^2+y^2)^{3/2}
\int\:_{0}^{y}\int\:_{0}^{x}(x^{2}+y^{2})^{\frac{3}{2}}dydx
area 3x, 3/4 x,70-x^2
area\:3x,\frac{3}{4}x,70-x^{2}
q^{''}+20q^'+500q=12
q^{\prime\:\prime\:}+20q^{\prime\:}+500q=12
limit as x approaches 1 of 3x^2-2x+1
\lim\:_{x\to\:1}(3x^{2}-2x+1)
integral of cos^2(3x)sin^2(3x)
\int\:\cos^{2}(3x)\sin^{2}(3x)dx
limit as x approaches 0 of xsin(5/x)
\lim\:_{x\to\:0}(x\sin(\frac{5}{x}))
y^'=((y+y^2))/(x^2)
y^{\prime\:}=\frac{(y+y^{2})}{x^{2}}
derivative of x^{3/4}y^3
\frac{d}{dx}(x^{\frac{3}{4}}y^{3})
integral from 0 to 3 of |3x-1|
\int\:_{0}^{3}\left|3x-1\right|dx
(\partial)/(\partial x)(x^2+xy+3y)
\frac{\partial\:}{\partial\:x}(x^{2}+xy+3y)
integral of (z+1)e^{2z}
\int\:(z+1)e^{2z}dz
integral of cos^5(x)sin^3(x)
\int\:\cos^{5}(x)\sin^{3}(x)dx
integral of x(x^2-3)^3
\int\:x(x^{2}-3)^{3}dx
integral of 1/(sqrt(16-9x^2))
\int\:\frac{1}{\sqrt{16-9x^{2}}}dx
(\partial)/(\partial x)(a^{-x})
\frac{\partial\:}{\partial\:x}(a^{-x})
integral from 0 to pi of 8sin(x/2)
\int\:_{0}^{π}8\sin(\frac{x}{2})dx
y^{''}-6y^'+8y=-2cos(4t)
y^{\prime\:\prime\:}-6y^{\prime\:}+8y=-2\cos(4t)
integral from 0 to 2 of 8t
\int\:_{0}^{2}8tdt
derivative of x/(\sqrt[3]{x^2+4})
\frac{d}{dx}(\frac{x}{\sqrt[3]{x^{2}+4}})
derivative of f(t)=t
derivative\:f(t)=t
derivative of-(2x/((x^2-4)^2))
\frac{d}{dx}(-\frac{2x}{(x^{2}-4)^{2}})
integral of (12)/(x^2+1)
\int\:\frac{12}{x^{2}+1}dx
taylor (1-x)^{1/5}
taylor\:(1-x)^{\frac{1}{5}}
derivative of (sqrt(x)/(1+x))
\frac{d}{dx}(\frac{\sqrt{x}}{1+x})
integral of (7(sin(2x))/(sin(x)))
\int\:(7\frac{\sin(2x)}{\sin(x)})dx
integral from-5 to 5 of 1/2 (25^2-x^4)
\int\:_{-5}^{5}\frac{1}{2}(25^{2}-x^{4})dx
integral of x/(1-x^2+sqrt(1-x^2))
\int\:\frac{x}{1-x^{2}+\sqrt{1-x^{2}}}dx
integral of (3x^2+14x)(x^3+7x^2+1)
\int\:(3x^{2}+14x)(x^{3}+7x^{2}+1)dx
derivative of g(t)=sqrt(1/(t^2-2))
derivative\:g(t)=\sqrt{\frac{1}{t^{2}-2}}
tangent of sqrt((5x^2-3x+2))^7
tangent\:\sqrt{(5x^{2}-3x+2)}^{7}
integral from 1 to 9 of (x-1)
\int\:_{1}^{9}(x-1)dx
(dy)/(dt)=(t^2)/(y+t^3y)
\frac{dy}{dt}=\frac{t^{2}}{y+t^{3}y}
(\partial)/(\partial x)(ln(7x))
\frac{\partial\:}{\partial\:x}(\ln(7x))
x^{''}+3x^'=0,x(0)=0,x^'(0)=-3
x^{\prime\:\prime\:}+3x^{\prime\:}=0,x(0)=0,x^{\prime\:}(0)=-3
derivative of e^{x^e}
derivative\:e^{x^{e}}
limit as x approaches 6-of sqrt(x-6)
\lim\:_{x\to\:6-}(\sqrt{x-6})
y^'=18x^2e^{-y}
y^{\prime\:}=18x^{2}e^{-y}
tangent of f(x)=x^2+3,\at x=2
tangent\:f(x)=x^{2}+3,\at\:x=2
derivative of f(x)=ln(x^3+2x^2+2x)
derivative\:f(x)=\ln(x^{3}+2x^{2}+2x)
integral of 1/(x(x^2-1))
\int\:\frac{1}{x(x^{2}-1)}dx
integral of ((2x+1))/(x^2-2x+5)
\int\:\frac{(2x+1)}{x^{2}-2x+5}dx
limit as x approaches pi/4 of tan^2(x)
\lim\:_{x\to\:\frac{π}{4}}(\tan^{2}(x))
integral of 9tan(x)
\int\:9\tan(x)dx
limit as x approaches-1 of (x+2)/(x+1)
\lim\:_{x\to\:-1}(\frac{x+2}{x+1})
integral of (5x+2)/(\sqrt[3]{6x+3)}
\int\:\frac{5x+2}{\sqrt[3]{6x+3}}dx
1
..
330
331
332
333
334
..
2459