Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (4\sqrt[4]{q})/(1-q)
derivative\:\frac{4\sqrt[4]{q}}{1-q}
(dy)/(dx)+y=2x
\frac{dy}{dx}+y=2x
(\partial)/(\partial y)((4y)/(x^5))
\frac{\partial\:}{\partial\:y}(\frac{4y}{x^{5}})
tangent of f(x)=3x^4-x^3-5x^2+7,\at x=3
tangent\:f(x)=3x^{4}-x^{3}-5x^{2}+7,\at\:x=3
integral of-1/(x+2)
\int\:-\frac{1}{x+2}dx
(dy)/(dx)=(((y+3))/((2x+5)))^2
\frac{dy}{dx}=(\frac{(y+3)}{(2x+5)})^{2}
(dy)/(dx)=-y^2+y
\frac{dy}{dx}=-y^{2}+y
derivative of sqrt(x^n)
\frac{d}{dx}(\sqrt{x^{n}})
maclaurin 10x^2sin(8x)
maclaurin\:10x^{2}\sin(8x)
derivative of sqrt(4x+10)
\frac{d}{dx}(\sqrt{4x+10})
integral from 2 to 6 of (x/2+1)
\int\:_{2}^{6}(\frac{x}{2}+1)dx
(dy)/(dx)=2xy
\frac{dy}{dx}=2xy
y^{''}+6y^'+90y=0
y^{\prime\:\prime\:}+6y^{\prime\:}+90y=0
tangent of f(x)=2x^2,\at x=-3
tangent\:f(x)=2x^{2},\at\:x=-3
derivative of y=\sqrt[4]{sin(3x-2)}
derivative\:y=\sqrt[4]{\sin(3x-2)}
integral of csc^2(6x+3)
\int\:\csc^{2}(6x+3)dx
derivative of (x/2 ^4)
\frac{d}{dx}((\frac{x}{2})^{4})
derivative of aln(2x+b)
\frac{d}{dx}(a\ln(2x+b))
tangent of f(x)=(ln(x))^3
tangent\:f(x)=(\ln(x))^{3}
integral of (\sqrt[3]{x})^2
\int\:(\sqrt[3]{x})^{2}dx
(dy)/(dx)-1/x y=e^{(y/x)}
\frac{dy}{dx}-\frac{1}{x}y=e^{(\frac{y}{x})}
limit as x approaches pi of (x-pi)tan(x/2)
\lim\:_{x\to\:π}((x-π)\tan(\frac{x}{2}))
(\partial)/(\partial x)(xy+yz+zy)
\frac{\partial\:}{\partial\:x}(xy+yz+zy)
sum from n=0 to infinity of (3^n)/(5^n)
\sum\:_{n=0}^{\infty\:}\frac{3^{n}}{5^{n}}
tangent of y=6sin(x),\at x= pi/6
tangent\:y=6\sin(x),\at\:x=\frac{π}{6}
(\partial}{\partial y}(xy-\frac{x^4)/4)
\frac{\partial\:}{\partial\:y}(xy-\frac{x^{4}}{4})
integral of e^{-2x}sin(6x)
\int\:e^{-2x}\sin(6x)dx
derivative of x^6e^{2.5x}
\frac{d}{dx}(x^{6}e^{2.5x})
derivative of e^{-0.02x}
\frac{d}{dx}(e^{-0.02x})
derivative of 18e^{x^2}x
derivative\:18e^{x^{2}}x
integral of (e^x)/(2x)
\int\:\frac{e^{x}}{2x}dx
y^{''}+2y^'+4y=5sin(t)
y^{\prime\:\prime\:}+2y^{\prime\:}+4y=5\sin(t)
integral of (-x^2-3x+6)^2
\int\:(-x^{2}-3x+6)^{2}dx
y^{''}-5y^'+6y=0,y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}-5y^{\prime\:}+6y=0,y(0)=0,y^{\prime\:}(0)=0
derivative of (2^x)/(3x-1)
derivative\:\frac{2^{x}}{3x-1}
sum from n=1 to infinity of (5nln(n))/(6^n)
\sum\:_{n=1}^{\infty\:}\frac{5n\ln(n)}{6^{n}}
derivative of (5+csc(x))/(9-csc(x))
derivative\:\frac{5+\csc(x)}{9-\csc(x)}
(1+t^2)(dy)/(dt)+2ty=t
(1+t^{2})\frac{dy}{dt}+2ty=t
integral of \sqrt[3]{7t}
\int\:\sqrt[3]{7t}dt
derivative of (x^2)/(sqrt(x^2+5))
derivative\:\frac{x^{2}}{\sqrt{x^{2}+5}}
taylor e^{-x}
taylor\:e^{-x}
inverse oflaplace 1/((s^4-1))
inverselaplace\:\frac{1}{(s^{4}-1)}
integral of 1/(7+5x)
\int\:\frac{1}{7+5x}dx
tangent of f(x)=(x-1)/(x+1),\at x=0
tangent\:f(x)=\frac{x-1}{x+1},\at\:x=0
derivative of (sqrt(x)+c^2)
\frac{d}{dx}((\sqrt{x}+c)^{2})
tangent of x^2+xy-y^2=-4,(2,4)
tangent\:x^{2}+xy-y^{2}=-4,(2,4)
y^'=(5x^5e^{y/x}+x^3y^2)/(x^4y)
y^{\prime\:}=\frac{5x^{5}e^{\frac{y}{x}}+x^{3}y^{2}}{x^{4}y}
integral of ((x+5)/(x^2+5x+6))
\int\:(\frac{x+5}{x^{2}+5x+6})dx
inverse oflaplace 1/(s+1/2)
inverselaplace\:\frac{1}{s+\frac{1}{2}}
derivative of f(x)= 4/(x^7)
derivative\:f(x)=\frac{4}{x^{7}}
laplacetransform 4t-e^{-3t}
laplacetransform\:4t-e^{-3t}
tangent of f(x)=20(x-1)e^{-0.5x},\at x=4
tangent\:f(x)=20(x-1)e^{-0.5x},\at\:x=4
derivative of f(x)=x^2+6
derivative\:f(x)=x^{2}+6
y^{''}-7y^'=2t
y^{\prime\:\prime\:}-7y^{\prime\:}=2t
integral of 5/(sqrt(25x^2-9))
\int\:\frac{5}{\sqrt{25x^{2}-9}}dx
area-2x^2+8,-x-6
area\:-2x^{2}+8,-x-6
integral of (x^3-2x^2-4)/(x^3-2x^2)
\int\:\frac{x^{3}-2x^{2}-4}{x^{3}-2x^{2}}dx
integral of (x^4+2)/(x^3+9x)
\int\:\frac{x^{4}+2}{x^{3}+9x}dx
integral of (x+1)/(x^5)
\int\:\frac{x+1}{x^{5}}dx
derivative of y=9arctan(x+sqrt(1+x^2))
derivative\:y=9\arctan(x+\sqrt{1+x^{2}})
implicit (dy)/(dx),y=x^2+5
implicit\:\frac{dy}{dx},y=x^{2}+5
derivative of-1.8t^2+14.4t
derivative\:-1.8t^{2}+14.4t
derivative of y=tsin(t)+cos(t)
derivative\:y=t\sin(t)+\cos(t)
integral of 9ln(x)
\int\:9\ln(x)dx
derivative of (-x^2-2)/((x^2-2)^2)
derivative\:\frac{-x^{2}-2}{(x^{2}-2)^{2}}
(\partial)/(\partial x)(2x-x^3+3xy^2)
\frac{\partial\:}{\partial\:x}(2x-x^{3}+3xy^{2})
taylor ln(cos(x))
taylor\:\ln(\cos(x))
(dy)/(dx)= x/(36y)
\frac{dy}{dx}=\frac{x}{36y}
inverse oflaplace 8/(s^2+64)
inverselaplace\:\frac{8}{s^{2}+64}
integral of (4x^3+6x^2-1)
\int\:(4x^{3}+6x^{2}-1)dx
integral of csc(x/2)
\int\:\csc(\frac{x}{2})dx
(\partial)/(\partial y)(10xy)
\frac{\partial\:}{\partial\:y}(10xy)
derivative of 1/(x^2-2x-3)
derivative\:\frac{1}{x^{2}-2x-3}
limit as x approaches 4 of 1/(sqrt(x+4))
\lim\:_{x\to\:4}(\frac{1}{\sqrt{x+4}})
integral of sin^{11}(x)cos^5(x)
\int\:\sin^{11}(x)\cos^{5}(x)dx
integral of ((19.8)/x-9x^2)
\int\:(\frac{19.8}{x}-9x^{2})dx
y^{''}+8y^'+20y=0,y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}+8y^{\prime\:}+20y=0,y(0)=0,y^{\prime\:}(0)=0
integral from 1 to 2 of x(2-x)
\int\:_{1}^{2}x(2-x)dx
integral from 0 to 1 of (85)/(x^5)
\int\:_{0}^{1}\frac{85}{x^{5}}dx
derivative of x/(9+x)
\frac{d}{dx}(\frac{x}{9+x})
derivative of f(x)=sqrt(x^2+10)
derivative\:f(x)=\sqrt{x^{2}+10}
integral of sin^2(x/4)
\int\:\sin^{2}(\frac{x}{4})dx
y^'+xy=xy^{-1}
y^{\prime\:}+xy=xy^{-1}
derivative of xey(x^2+yln(x))
\frac{d}{dx}(xey(x)^{2}+y\ln(x))
integral of 1/(x^4sqrt(1+x^2))
\int\:\frac{1}{x^{4}\sqrt{1+x^{2}}}dx
taylor ln(1-3y)
taylor\:\ln(1-3y)
integral of ((x^2))/(x^2+9)
\int\:\frac{(x^{2})}{x^{2}+9}dx
integral of (5-x)/(x^2+x-2)
\int\:\frac{5-x}{x^{2}+x-2}dx
derivative of e^{-4x}sin(4x)
\frac{d}{dx}(e^{-4x}\sin(4x))
integral of (tan^2(θ))/(sec(θ))
\int\:\frac{\tan^{2}(θ)}{\sec(θ)}dθ
-y+(dy)/(dx)ln(x)=0
-y+\frac{dy}{dx}\ln(x)=0
derivative of arcsin(x^2+1)
\frac{d}{dx}(\arcsin(x^{2}+1))
tangent of y= x/(sqrt(36+x^2)),(0,0)
tangent\:y=\frac{x}{\sqrt{36+x^{2}}},(0,0)
integral of 5/(sqrt(x)(7+5\sqrt{x))^6}
\int\:\frac{5}{\sqrt{x}(7+5\sqrt{x})^{6}}dx
parity f(t)=tan(sec(cos(t)))
parity\:f(t)=\tan(\sec(\cos(t)))
limit as x approaches 1+of sqrt(x)
\lim\:_{x\to\:1+}(\sqrt{x})
limit as x approaches 5 of 76
\lim\:_{x\to\:5}(76)
(dy)/(dx)=x+y,y(0)=1
\frac{dy}{dx}=x+y,y(0)=1
integral from-5 to 7 of (x/2+7)
\int\:_{-5}^{7}(\frac{x}{2}+7)dx
derivative of (ln(x))^{4sin(x)}
derivative\:(\ln(x))^{4\sin(x)}
1
..
866
867
868
869
870
..
2459