Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 0 to infinity of 3e^{-3x}
\int\:_{0}^{\infty\:}3e^{-3x}dx
derivative of 9/(8\sqrt[4]{x^3})
\frac{d}{dx}(\frac{9}{8\sqrt[4]{x^{3}}})
integral from 0 to 1 of 1/((x-1)^{2/3)}
\int\:_{0}^{1}\frac{1}{(x-1)^{\frac{2}{3}}}dx
derivative of (8x^{1/3})
\frac{d}{dx}((8x)^{\frac{1}{3}})
integral of-cos(t)sin^2(t)
\int\:-\cos(t)\sin^{2}(t)dt
derivative of (e^x/(e^x+5))
\frac{d}{dx}(\frac{e^{x}}{e^{x}+5})
integral of 3cos^2(x)sin(2x)
\int\:3\cos^{2}(x)\sin(2x)dx
derivative of 8sqrt(4x-1)
\frac{d}{dx}(8\sqrt{4x-1})
limit as x approaches 2 of x^2+a
\lim\:_{x\to\:2}(x^{2}+a)
y^{'''}-3y^{''}+3y^'-y=x
y^{\prime\:\prime\:\prime\:}-3y^{\prime\:\prime\:}+3y^{\prime\:}-y=x
derivative of cos(ln(x)+sin(ln(x)))
\frac{d}{dx}(\cos(\ln(x))+\sin(\ln(x)))
integral of (sqrt(x))/2+2/(sqrt(x))
\int\:\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}}dx
(\partial)/(\partial x)((x+y)/(xy-1))
\frac{\partial\:}{\partial\:x}(\frac{x+y}{xy-1})
(dy)/(dx)=sin(y)+1
\frac{dy}{dx}=\sin(y)+1
derivative of x^{3cos(x})
\frac{d}{dx}(x^{3\cos(x)})
derivative of f(x)=sqrt(7x)
derivative\:f(x)=\sqrt{7x}
limit as x approaches 8 of (1+\sqrt[3]{x})(x^3-6x^2+2)
\lim\:_{x\to\:8}((1+\sqrt[3]{x})(x^{3}-6x^{2}+2))
(\partial)/(\partial x)(x^2+2x+y^2)
\frac{\partial\:}{\partial\:x}(x^{2}+2x+y^{2})
derivative of f(x)=4x^2-x^3
derivative\:f(x)=4x^{2}-x^{3}
(\partial)/(\partial z)(x/(y+2z))
\frac{\partial\:}{\partial\:z}(\frac{x}{y+2z})
x^{''}+4x=0
x^{\prime\:\prime\:}+4x=0
sum from n=1 to infinity of 1/(n+1^{-n)}
\sum\:_{n=1}^{\infty\:}\frac{1}{n+1^{-n}}
5y^{''}+15y^'-20y=0
5y^{\prime\:\prime\:}+15y^{\prime\:}-20y=0
integral of (x^2-x+1)
\int\:(x^{2}-x+1)dx
integral of 6/(x^2sqrt(x^2+16))
\int\:\frac{6}{x^{2}\sqrt{x^{2}+16}}dx
limit as x approaches 2 of x+1
\lim\:_{x\to\:2}(x+1)
integral from 0 to infinity of sin(2x)
\int\:_{0}^{\infty\:}\sin(2x)dx
limit as x approaches 2 of (3x+1)/(x+2)
\lim\:_{x\to\:2}(\frac{3x+1}{x+2})
d/(dt)(0.00225te^{-0.0467t})
\frac{d}{dt}(0.00225te^{-0.0467t})
(\partial)/(\partial x)(xy(sin((x^5)+y^5)))
\frac{\partial\:}{\partial\:x}(xy(\sin((x^{5})+y^{5})))
integral from-1 to 2 of 1/(x^2)
\int\:_{-1}^{2}\frac{1}{x^{2}}dx
derivative of |x-2|
\frac{d}{dx}(\left|x-2\right|)
derivative of e^{(3/x)}
derivative\:e^{(\frac{3}{x})}
derivative of (x^5-7^2)
\frac{d}{dx}((x^{5}-7)^{2})
integral of (sin(ln(x)))/x
\int\:\frac{\sin(\ln(x))}{x}dx
integral of (x^2)/((x^2+25)^{3/2)}
\int\:\frac{x^{2}}{(x^{2}+25)^{\frac{3}{2}}}dx
derivative of 1/(-x^2)
\frac{d}{dx}(\frac{1}{-x^{2}})
(dy)/(dx)=x+2y,y(0)=6
\frac{dy}{dx}=x+2y,y(0)=6
limit as x approaches 0 of (pix^2+2)/x
\lim\:_{x\to\:0}(\frac{πx^{2}+2}{x})
(\partial)/(\partial x)(ln|x|)
\frac{\partial\:}{\partial\:x}(\ln\left|x\right|)
limit as x approaches 0 of 3xln(x)
\lim\:_{x\to\:0}(3x\ln(x))
limit as x approaches 3 of sqrt(8x^2+9)
\lim\:_{x\to\:3}(\sqrt{8x^{2}+9})
limit as x approaches a of \sqrt[3]{x}
\lim\:_{x\to\:a}(\sqrt[3]{x})
simplify (x-3)/(sqrt(x)-\sqrt{3)}
simplify\:\frac{x-3}{\sqrt{x}-\sqrt{3}}
area x^3,3x-2
area\:x^{3},3x-2
tangent of y=(27)/(x^2+9),(-3, 3/2)
tangent\:y=\frac{27}{x^{2}+9},(-3,\frac{3}{2})
limit as x approaches infinity+of 3x^2-8
\lim\:_{x\to\:\infty\:+}(3x^{2}-8)
derivative of f(x)=(1/4 x)^3
derivative\:f(x)=(\frac{1}{4}x)^{3}
derivative of (tan(x)^2)
\frac{d}{dx}((\tan(x))^{2})
y^'=-y-2x,y(0)=1
y^{\prime\:}=-y-2x,y(0)=1
(dy)/(dx)+4xy^3=0
\frac{dy}{dx}+4xy^{3}=0
derivative of f(x)=(-16x^2+36)^2
derivative\:f(x)=(-16x^{2}+36)^{2}
derivative of arctan(tanh(x))
\frac{d}{dx}(\arctan(\tanh(x)))
integral of (2x^3+1)/(x^2+x-6)
\int\:\frac{2x^{3}+1}{x^{2}+x-6}dx
integral of 1/(sqrt(2x^2-4x+6))
\int\:\frac{1}{\sqrt{2x^{2}-4x+6}}dx
integral from 0 to 1 of 2pix(33-33x)
\int\:_{0}^{1}2πx(33-33x)dx
limit as x approaches 0 of (4/(x+4)-1)/x
\lim\:_{x\to\:0}(\frac{\frac{4}{x+4}-1}{x})
integral from 0 to 1 of (73)/(x^5)
\int\:_{0}^{1}\frac{73}{x^{5}}dx
limit as x approaches-1 of (inx)/(x-1)
\lim\:_{x\to\:-1}(\frac{inx}{x-1})
(dy)/(dx)=2xy^2+72x
\frac{dy}{dx}=2xy^{2}+72x
tangent of f(x)=4x^2+3x
tangent\:f(x)=4x^{2}+3x
integral of x^3sqrt(x^2+25)
\int\:x^{3}\sqrt{x^{2}+25}dx
(dy)/(dx)= y/(y-x)
\frac{dy}{dx}=\frac{y}{y-x}
(\partial)/(\partial x)(2(xe^{x/2+y}+1))
\frac{\partial\:}{\partial\:x}(2(xe^{\frac{x}{2}+y}+1))
derivative of 2e^x+3x-ln(x)
\frac{d}{dx}(2e^{x}+3x-\ln(x))
integral of-1/2 sin(2x)
\int\:-\frac{1}{2}\sin(2x)dx
limit as x approaches 80 of 82-x
\lim\:_{x\to\:80}(82-x)
integral of 2sin(pix)
\int\:2\sin(πx)dx
derivative of x^4-6x^3
derivative\:x^{4}-6x^{3}
limit as x approaches-2-of 2x+1
\lim\:_{x\to\:-2-}(2x+1)
derivative of 2sin(8x)
\frac{d}{dx}(2\sin(8x))
slope of x-sqrt(x)
slope\:x-\sqrt{x}
y^'-y=2xe^{2x}
y^{\prime\:}-y=2xe^{2x}
f^'(x)=sqrt(x)(6+5x)
f^{\prime\:}(x)=\sqrt{x}(6+5x)
tangent of f(x)= 1/(sqrt(10x)),\at x=9
tangent\:f(x)=\frac{1}{\sqrt{10x}},\at\:x=9
integral of x^6+1/(sqrt(1-4x^2))
\int\:x^{6}+\frac{1}{\sqrt{1-4x^{2}}}dx
laplacetransform e^{-4t}
laplacetransform\:e^{-4t}
(i)^'
(i)^{\prime\:}
derivative of sqrt(1+tan^2(x))
\frac{d}{dx}(\sqrt{1+\tan^{2}(x)})
derivative of 1/((x^2+y^2))
\frac{d}{dx}(\frac{1}{(x^{2}+y^{2})})
(\partial)/(\partial x)(e^{7xy})
\frac{\partial\:}{\partial\:x}(e^{7xy})
integral of sin^3(x)-sin^5(x)
\int\:\sin^{3}(x)-\sin^{5}(x)dx
derivative of f(x)= x/(x^2-4)
derivative\:f(x)=\frac{x}{x^{2}-4}
9x^2y^'=y^'+6xe^{-y}
9x^{2}y^{\prime\:}=y^{\prime\:}+6xe^{-y}
y^'=y(xy^5+1)
y^{\prime\:}=y(xy^{5}+1)
area y=|x|,y=x^2-1
area\:y=\left|x\right|,y=x^{2}-1
taylor (cos(sqrt(x)))^{1/x}
taylor\:(\cos(\sqrt{x}))^{\frac{1}{x}}
area x=y^2-4y,x=0
area\:x=y^{2}-4y,x=0
y^'+(tan(t))y=tan(t)
y^{\prime\:}+(\tan(t))y=\tan(t)
derivative of y=(x^2+3x)^2
derivative\:y=(x^{2}+3x)^{2}
derivative of coth(x)
\frac{d}{dx}(\coth(x))
limit as x approaches 0+of e^{1/x}*x
\lim\:_{x\to\:0+}(e^{\frac{1}{x}}\cdot\:x)
limit as x approaches 1 of (x^4-1)/(x+1)
\lim\:_{x\to\:1}(\frac{x^{4}-1}{x+1})
limit as x approaches 4 of 5x+6
\lim\:_{x\to\:4}(5x+6)
limit as n approaches infinity of n/3
\lim\:_{n\to\:\infty\:}(\frac{n}{3})
derivative of (sin(1/x*x^3)/(ln(x)))
\frac{d}{dx}(\frac{\sin(\frac{1}{x})\cdot\:x^{3}}{\ln(x)})
implicit (dy)/(dx),(x-y)^2=2ax
implicit\:\frac{dy}{dx},(x-y)^{2}=2ax
derivative of (x^3/(x^2+2))
\frac{d}{dx}(\frac{x^{3}}{x^{2}+2})
derivative of 2x^3-6x^2
\frac{d}{dx}(2x^{3}-6x^{2})
y^'=y(1-0.0002y)
y^{\prime\:}=y(1-0.0002y)
1
..
853
854
855
856
857
..
2459