Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
inverse oflaplace s/((s^2+25)^2)
inverselaplace\:\frac{s}{(s^{2}+25)^{2}}
integral of 3x(5-x)
\int\:3x(5-x)dx
limit as x approaches 0 of x/(2tan(x))
\lim\:_{x\to\:0}(\frac{x}{2\tan(x)})
derivative of (x^3/6)
\frac{d}{dx}(\frac{x^{3}}{6})
integral from 0 to 1 of 1/(5x-3)
\int\:_{0}^{1}\frac{1}{5x-3}dx
2y^{''}+y^'-y=x+1
2y^{\prime\:\prime\:}+y^{\prime\:}-y=x+1
limit as x approaches 3 of x^2+4x-3
\lim\:_{x\to\:3}(x^{2}+4x-3)
derivative of x^3-4
\frac{d}{dx}(x^{3}-4)
integral of (1-x)^5(x+1)^2
\int\:(1-x)^{5}(x+1)^{2}dx
f(x)=sqrt(x^2+3)
f(x)=\sqrt{x^{2}+3}
integral of (cos(x)+sec(x))^2
\int\:(\cos(x)+\sec(x))^{2}dx
integral of (4x^2+3+5/(x^2+1))
\int\:(4x^{2}+3+\frac{5}{x^{2}+1})dx
integral from 3 to 4 of 5x
\int\:_{3}^{4}5xdx
y^{''}+9y=18
y^{\prime\:\prime\:}+9y=18
sum from n=1 to infinity of (15n!)/(n^n)
\sum\:_{n=1}^{\infty\:}\frac{15n!}{n^{n}}
(\partial)/(\partial x)(2x+3y+6xye^{3x^2y})
\frac{\partial\:}{\partial\:x}(2x+3y+6xye^{3x^{2}y})
(\partial)/(\partial x)(x^2+xe^{2y})
\frac{\partial\:}{\partial\:x}(x^{2}+xe^{2y})
derivative of (2arctan(x)/(1+x^2))
\frac{d}{dx}(\frac{2\arctan(x)}{1+x^{2}})
area x=0,y=x^2,y=x+2
area\:x=0,y=x^{2},y=x+2
limit as x approaches-1 of-6
\lim\:_{x\to\:-1}(-6)
derivative of sqrt(9x-(sin^2(2x)))
derivative\:\sqrt{9x-(\sin^{2}(2x))}
(\partial)/(\partial x)(xsin(y))
\frac{\partial\:}{\partial\:x}(x\sin(y))
area x^2,8-x^2,4x+12
area\:x^{2},8-x^{2},4x+12
derivative of 7^{x^2-x}
derivative\:7^{x^{2}-x}
integral from 0 to pi/2 of cos^4(2x)
\int\:_{0}^{\frac{π}{2}}\cos^{4}(2x)dx
x(dy)/(dx)-y=2x^2y^2
x\frac{dy}{dx}-y=2x^{2}y^{2}
derivative of sin(2)x^3
derivative\:\sin(2)x^{3}
limit as x approaches 2+of sqrt(x-2)
\lim\:_{x\to\:2+}(\sqrt{x-2})
f(x)=arccsc(x)
f(x)=\arccsc(x)
tangent of f(x)=ln(tan(2x)),\at x= pi/8
tangent\:f(x)=\ln(\tan(2x)),\at\:x=\frac{π}{8}
derivative of (e^x+1/(e^{2x)-5e^x+6})
\frac{d}{dx}(\frac{e^{x}+1}{e^{2x}-5e^{x}+6})
(\partial)/(\partial x)(2x+3x^2y)
\frac{\partial\:}{\partial\:x}(2x+3x^{2}y)
(xe^{-3x})^'
(xe^{-3x})^{\prime\:}
integral from 0 to 2 of x^3-3x^2+4
\int\:_{0}^{2}x^{3}-3x^{2}+4dx
y^'-(5y)/x =3x^4,y(1)=5
y^{\prime\:}-\frac{5y}{x}=3x^{4},y(1)=5
2sqrt(x)(dy)/(dx)=(cos^2(y))
2\sqrt{x}\frac{dy}{dx}=(\cos^{2}(y))
limit as x approaches 0+of 5/(1+x)
\lim\:_{x\to\:0+}(\frac{5}{1+x})
derivative of (3sqrt(z)-sin(z))/(-e^z)
derivative\:\frac{3\sqrt{z}-\sin(z)}{-e^{z}}
integral of 2e^xsqrt(9+e^x)
\int\:2e^{x}\sqrt{9+e^{x}}dx
integral of (-5sec^2(x))
\int\:(-5\sec^{2}(x))dx
integral from-2 to-1 of x^{-3}
\int\:_{-2}^{-1}x^{-3}dx
limit as x approaches 1 of (1-1/x)/(1-x)
\lim\:_{x\to\:1}(\frac{1-\frac{1}{x}}{1-x})
integral from 0 to pi of sec^2(t/3)
\int\:_{0}^{π}\sec^{2}(\frac{t}{3})dt
derivative of f(x)= 3/(\sqrt[3]{x)}
derivative\:f(x)=\frac{3}{\sqrt[3]{x}}
tangent of y=x^3,(-2,-8)
tangent\:y=x^{3},(-2,-8)
sum from n=1 to infinity of ((-3)^n)/n
\sum\:_{n=1}^{\infty\:}\frac{(-3)^{n}}{n}
derivative of x-x^{-1}
\frac{d}{dx}(x-x^{-1})
y^'-3/x y=(y^4)/(x^2)
y^{\prime\:}-\frac{3}{x}y=\frac{y^{4}}{x^{2}}
d/(ds)(si)
\frac{d}{ds}(si)
derivative of (x^2+1)/(sqrt(x))
derivative\:\frac{x^{2}+1}{\sqrt{x}}
integral of sin(x)cos(n)x
\int\:\sin(x)\cos(n)xdx
y^'= t/(1+t^2)*e^y
y^{\prime\:}=\frac{t}{1+t^{2}}\cdot\:e^{y}
limit as n approaches infinity of x/n
\lim\:_{n\to\:\infty\:}(\frac{x}{n})
d/(d{r)}(1/({r)^2})
\frac{d}{d{r}}(\frac{1}{{r}^{2}})
derivative of 1/3 x^{-2/3}
derivative\:\frac{1}{3}x^{-\frac{2}{3}}
integral of sin^3(v)cos^8(v)
\int\:\sin^{3}(v)\cos^{8}(v)dv
d/(dn)((n+1)^n)
\frac{d}{dn}((n+1)^{n})
derivative of f(x)=(sin(5x))/(3x)
derivative\:f(x)=\frac{\sin(5x)}{3x}
derivative of 7/(1-x)
derivative\:\frac{7}{1-x}
derivative of (12/((1-x)^5))
\frac{d}{dx}(\frac{12}{(1-x)^{5}})
sum from n=3 to infinity of (x^n)/(n!)
\sum\:_{n=3}^{\infty\:}\frac{x^{n}}{n!}
integral of 1/(sqrt(1-49x^2))
\int\:\frac{1}{\sqrt{1-49x^{2}}}dx
integral of (x^2-25)/(x-5)
\int\:\frac{x^{2}-25}{x-5}dx
(\partial)/(\partial y)(4x^3y^3)
\frac{\partial\:}{\partial\:y}(4x^{3}y^{3})
area y=2x^2-1,(0,1)
area\:y=2x^{2}-1,(0,1)
limit as x approaches 4 of 4x^2+5x+1
\lim\:_{x\to\:4}(4x^{2}+5x+1)
derivative of 3x+3
\frac{d}{dx}(3x+3)
limit as x approaches 0 of x/(sin(x/4))
\lim\:_{x\to\:0}(\frac{x}{\sin(\frac{x}{4})})
derivative of e^x-2-x
\frac{d}{dx}(e^{x}-2-x)
y^'-9/x y=(y^4)/(x^{13)},y(1)=1
y^{\prime\:}-\frac{9}{x}y=\frac{y^{4}}{x^{13}},y(1)=1
(dx)/(dt)-4x=cos(3t),x(0)=-1
\frac{dx}{dt}-4x=\cos(3t),x(0)=-1
derivative of 7e^x+2/(\sqrt[3]{x})
\frac{d}{dx}(7e^{x}+\frac{2}{\sqrt[3]{x}})
limit as x approaches-2 of (x^2+5x)^2
\lim\:_{x\to\:-2}((x^{2}+5x)^{2})
limit as t approaches pi of-8sin(t/2)
\lim\:_{t\to\:π}(-8\sin(\frac{t}{2}))
(\partial)/(\partial y)(x^ay^b)
\frac{\partial\:}{\partial\:y}(x^{a}y^{b})
integral from 0 to pi of sec^2(x)
\int\:_{0}^{π}\sec^{2}(x)dx
derivative of cy^{-4}
derivative\:cy^{-4}
integral of (3x^{1/3})
\int\:(3x^{\frac{1}{3}})dx
integral of (e^{3x+9}-3x^2)
\int\:(e^{3x+9}-3x^{2})dx
derivative of y=8arcsin(x/4)-(xsqrt(16-x^2))/2
derivative\:y=8\arcsin(\frac{x}{4})-\frac{x\sqrt{16-x^{2}}}{2}
(\partial)/(\partial x)(e^ycos(x))
\frac{\partial\:}{\partial\:x}(e^{y}\cos(x))
integral from-1 to 1 of 9x^2+6x-3
\int\:_{-1}^{1}9x^{2}+6x-3dx
(\partial)/(\partial x)(3x^2-3y)
\frac{\partial\:}{\partial\:x}(3x^{2}-3y)
derivative of 1/(1+x+x^2)
\frac{d}{dx}(\frac{1}{1+x+x^{2}})
(-x^2)^'
(-x^{2})^{\prime\:}
derivative of xe^{x+1}
\frac{d}{dx}(xe^{x+1})
(2+x)(dy)/(dx)=3y
(2+x)\frac{dy}{dx}=3y
integral from 0 to 2 of 2t^3
\int\:_{0}^{2}2t^{3}dt
derivative of sqrt(x)+sqrt(y)=2
\frac{d}{dx}(\sqrt{x}+\sqrt{y})=2
derivative of sqrt(8t^2+9)
derivative\:\sqrt{8t^{2}+9}
integral of x^2e^{1x}
\int\:x^{2}e^{1x}dx
integral of (e^x+e^{2x})/(e^x)
\int\:\frac{e^{x}+e^{2x}}{e^{x}}dx
laplacetransform e^{-2t}sin(t)
laplacetransform\:e^{-2t}\sin(t)
limit as x approaches a of 3/0
\lim\:_{x\to\:a}(\frac{3}{0})
inverse oflaplace (20)/(s(s+10))
inverselaplace\:\frac{20}{s(s+10)}
derivative of (-x^2-4)/((x^2-4)^2)
derivative\:\frac{-x^{2}-4}{(x^{2}-4)^{2}}
sum from n=0 to infinity of 1/((1+n^2))
\sum\:_{n=0}^{\infty\:}\frac{1}{(1+n^{2})}
derivative of t^{-2}
derivative\:t^{-2}
sum from n=0 to infinity of 1/(7^n)
\sum\:_{n=0}^{\infty\:}\frac{1}{7^{n}}
(dy}{dx}=\frac{(x+sec^2(x)))/y
\frac{dy}{dx}=\frac{(x+\sec^{2}(x))}{y}
1
..
386
387
388
389
390
..
2459